Open access
Technical Papers
Sep 26, 2022

Physical and Geometric Effects on the Classical Geodetic Observations in Small-Scale Control Networks

Publication: Journal of Surveying Engineering
Volume 149, Issue 1

Abstract

In classical two-dimensional (2D) geodetic networks, reducing slope distances to horizontal ones is an important task for engineers. These horizontal distances along with horizontal directions are used in 2D geodetic adjustment. The common practice for this reduction is the use of vertical angles to reduce distances using trigonometric rules. However, one faces systematic effects when using vertical angles. These effects are mainly due to refraction, deflection of the vertical (DOV), and the geometric effect of the reference surface (sphere or ellipsoid). To mitigate refraction and DOV effects, one can choose to observe the vertical angles reciprocally if the baseline points’ elevation difference is small. This paper quantifies these effects and proposes a proper solution to eliminate the effects in small-scale geodetic networks (where the longest distances are less than 5 km). The goal is to calculate slope distances into horizontal ones appropriately. For this purpose, we used the SWEN17_RH2000 quasigeoid model (in Sweden) to study the impact of the DOV applying different baseline lengths, azimuths, and vertical angles. Finally, we propose an approach to study the impact of the geometric effect on vertical angles. We illustrate that the DOV and the geometric effects on vertical angles measured reciprocally are significant if the height difference of the start point and endpoint in the baseline is large. Geometric correction should be considered for the measured vertical angles to calculate horizontal distances correctly if the network points are not on the same elevation, even if the vertical angles are measured reciprocally.

Formats available

You can view the full content in the following formats:

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request. The available data are: (1) the deflection of vertical (DOV) components in Sweden and (2) MATLAB code for calculating the curvature-skewness problem.

Acknowledgments

The authors are grateful to Dr. Mahmoud Mohammad Karim from K. N. Toosi University of Technology (Iran), whose lectures inspired the main subject of this paper. We would like to thank the anonymous reviewers for taking the time, their careful reading of our manuscript, and their many insightful comments and suggestions.

References

Ågren, J., C. Kempe, and L. Jivall. 2018. “Noggrann höjdbestämning med den nya nationella geoidmodellen SWEN17_RH2000.” [In Swedish.] In Proc., Conf. on Kartdagarna. Gävle, Sweden: Lantmäteriet.
Ashkenazi, V., and P. D. Howard. 1984. “An empirical method for refraction modelling in trigonometrical heighting.” Surv. Rev. 27 (213): 311–322. https://doi.org/10.1179/sre.1984.27.213.311.
Bell, B. 1992. “ME5000 operation.” In Proc., the use and calibration of the Kern ME5000 Mekometer. Menlo Park, CA: Stanford Linear Accelerator Center, Stanford Univ. Stanford.
Bomford, G. 1971. Geodesy. Oxford, UK: Clarendon Press.
Bowring, B. R. 1983. “The geodesic inverse problem.” Bull. Géodésique 57 (1): 109–120. https://doi.org/10.1007/BF02520917.
Brunner, F. K. 1984. Geodetic refraction, 216. Berlin: Springer.
Cronstrand, S. A. 1811. “Stockholms observatorii pol-högd bestämd.” Kongliga Svenska Vetenskaps-Akademiens Handlingar 32: 291–295.
Dodson, A. H., and M. Zaher. 1985. “Refraction effects on vertical angle measurements.” Surv. Rev. 28 (217): 169–183. https://doi.org/10.1179/sre.1985.28.217.169.
Ekman, M., and J. Ågren. 2010. Reanalysing astronomical coordinates of old fundamental observatories using satellite positioning and deflections of the vertical. Åland Islands, Sweden: Summer Institute for Historical Geophysics.
Featherstone, W. E., and J. M. Rüeger. 2000. “The importance of using deviations of the vertical for the reduction of survey data to a geocentric datum.” Aust. Surveyor 45 (2): 46–61. https://doi.org/10.1080/00050354.2000.10558815.
Grafarend, E. W., and F. Sansò. 2012. Optimization and design of geodetic networks. Cham, Switzerland: Springer.
Heiskanen, W. A., and H. Moritz. 1967. Physical geodesy. San Francisco: W. H. Freeman and Company.
Hirt, C., and G. Seeber. 2002. “Astrogeodätische Lotabweichungsbestimmung mit dem digitalen Zenitkamerasystem TZK2-D.” ZfV–Z. Geodaesie Geoinf. Landmanagement 127 (1): 388–396.
Hofmann-Wellenhof, B., H. Lichtenegger, and E. Wasle. 2007. GNSS—Global navigation satellite systems: GPS, GLONASS, Galileo, and more. Hoboken, NJ: Springer.
Jekeli, C. 1999. “An analysis of vertical deflections derived from high-degree spherical harmonic models.” J. Geod. 73 (1): 10–22. https://doi.org/10.1007/s001900050213.
Krakiwsky, E. J., and D. B. Thomson. 1974. Geodetic position computations. Fredericton, NB: Univ. of New Brunswick.
Kuang, S. 1996. Geodetic network analysis and optimal design: Concepts and applications. Lansing, MI: Ann Arbor Press.
Lantmäteriet. 2020. Produktbeskrivning, GSD-Höjddata grid 50+ nh. Gävle, Sweden: Lantmäteriet.
Meyer, T. H., and A. F. Elaksher. 2021. “Solving the multilateration problem without iteration.” Geomatics 1 (3): 324–334. https://doi.org/10.3390/geomatics1030018.
Molodenskij, M. S., V. F. Eremeev, and M. I. Yurkina. 1962. Methods for study of the external gravitational field and figure of the Earth. [In Russian.] Jerusalem, Israel: Israel Program for Scientific Translations.
Moritz, H. 2000. “Geodetic reference system 1980.” J. Geod. 74 (1): 128–133. https://doi.org/10.1007/s001900050278.
Pavlis, N. K., S. A. Holmes, S. C. Kenyon, and J. K. Factor. 2012. “The development and evaluation of the Earth Gravitational Model 2008 (EGM2008).” J. Geophys. Res. Solid Earth 117 (4): 1–38. https://doi.org/10.1029/2011JB008916.
Rapp, R. H. 1991. Geometric geodesy part I. Columbus, OH: Ohio State Univ.
Rapp, R. H. 1993. Geometric geodesy part 2. Columbus, OH: Ohio State Univ.
Rollins, C. M., and T. H. Meyer. 2019. “Four methods for low-distortion projections.” J. Surv. Eng. 145 (4): 04019017. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000295.
Schaffrin, B. 1985. “Aspects of network design.” In Optimization and design of geodetic networks, 548–597. Berlin: Springer.
Schofield, W., and M. Breach. 2007. Engineering surveying. Boca Raton, FL: CRC Press.
Selander, N. H. 1835. “Undersökning om Stockholms observatorii polhöjd.” Kongliga Svenska Vetenskaps-Akademiens Handlingar 170–204.
Shirazian, M., M. Bagherbandi, and H. Karimi. 2021. “Network-aided reduction of slope distances in small-scale geodetic control networks.” J. Surv. Eng. 147 (4): 04021024. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000375.
Sjöberg, L. E., and M. Bagherbandi. 2017. Gravity inversion and integration. Cham, Switzerland: Springer.
USACE. 2002. Engineering and design: Structural deformation surveying. Washington, DC: USACE.
Vanicek, P., and E. J. Krakiwsky. 1986. Geodesy: The concepts. Amsterdam, Netherlands: Elsevier.
Vincenty, T. 1975. “Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations.” Surv. Rev. 23 (176): 88–93. https://doi.org/10.1179/sre.1975.23.176.88.
Wargentin, P. 1759. “Stockholms observatorii pol-högd bestämd.” Kongliga Svenska Vetenskaps-Akademiens Handlingar 20: 305–314.

Information & Authors

Information

Published In

Go to Journal of Surveying Engineering
Journal of Surveying Engineering
Volume 149Issue 1February 2023

History

Received: Jan 27, 2022
Accepted: May 31, 2022
Published online: Sep 26, 2022
Published in print: Feb 1, 2023
Discussion open until: Feb 26, 2023

Authors

Affiliations

Mohammad Bagherbandi [email protected]
Professor, Faculty of Engineering and Sustainable Development, Univ. of Gävle, Gävle 80176, Sweden; Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, SE 10044, Sweden (corresponding author). Email: [email protected]
Assistant Professor, Dept. of Geomatics Engineering, Civil Engineering Faculty, Shahid Rajaee Teacher Training Univ., Tehran 1678815811, Iran. ORCID: https://orcid.org/0000-0002-4013-0729. Email: [email protected]
Jonas Ågren [email protected]
Associate Professor, Faculty of Engineering and Sustainable Development, Univ. of Gävle, Gävle 80176, Sweden; Dept. of Geodetic Infrastructure, Geodata Division, Lantmäteriet, Gävle, SE 80182, Sweden. Email: [email protected]
Milan Horemuz [email protected]
Associate Professor, Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), Stockholm, SE 10044, Sweden. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share