Abstract

The study and understanding of the geodynamic aspects on the planet require global geodetic references with an order of accuracy better than the magnitude of the effects and with consistency and reliability. In this sense, this paper aims to present the new gravimetric infrastructure in the Brazilian southeast. A set of 22 absolute gravity stations were measured and materialized in the region. Additionally, gravity densification was carried out throughout the region aiming at a quasigeoid model. In the last decade, almost 3,000 points were collected. The model was computed by the least-squares collocation methodology using a recent geopotential model in the long- wavelength component and recent digital terrain model to compute the terrain correction. The quasigeoid model was validated with 136 global navigation satellite system (GNSS)/leveling stations and the RMS is 0.25 m. Furthermore, GNSS/leveling stations were compared with five recent geopotential models and the mean RMS difference was 0.28 m. Absolute and relative gravity stations will improve the national geodetic infrastructure, especially concerning the International Height Reference Frame and the International Gravity Reference Frame.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data (gravity values, height anomalies derived from GNSS/leveling stations) used during the study are free and available online in the IBGE’s repository (IBGE 2019). Global gravity models are available at the International Centre for Global Earth Models (ICGEM, n.d.). The GRAVSFOT software package is free and was provided for the first author at the 9th International Geoid School. The absolute gravity stations report is available at Centro de Estudos de Geodesia (n.d.). Data and metadata are available at the Absolute Gravity Database (AGrav) (BGI, n.d.). The quasi-geoid model is available at the International Service for the Geoid (ISG, n.d.).

Acknowledgments

The authors acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (financial code CNPQ 420555/2016-1) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) (financial code APQ-01547-17) for the financial support and the National Observatory for the loan of the gravimeter (Code 127/2017). The maps in this paper were compiled using the GMT (Generic Mapping Tools) software package version 5.3.2 (Wessel et al. 2013).

References

Andersen, O. B., and P. Knudsen. 2020. “The DTU17 global marine gravity field: First validation results.” In Fiducial reference measurements for altimetry, edited by S. P. Mertikas and R. Pail, 83–87. Cham, Switzerland: Springer.
BGI (International Gravimetric Bureau). n.d. “AGrav: Absolute gravity database—Meta-data.” Accessed March 16, 2021. http://agrav.bkg.bund.de/agrav-meta/.
Blitzkow, D., G. N. Guimarães, A. C. O. C. Matos, and D. S. Costa. 2013. “Implantaç ão de uma rede gravimétrica absoluta e de um modelo de maré para o estado de São Paulo.” In Proc., VIII Colóquio Brasileiro de Ciências Geodésicas. Curitiba, Brazil: Programa de Pós-graduação em Ciências Geodésicas.
Bottoni, G. P., and R. Barzaghi. 1993. “Fast collocation.” Bulletin Géodésique 67 (2): 119–126. https://doi.org/10.1007/BF01371375.
Centro de Estudos de Geodesia. n.d. “Rede absoluta de outros Estados Brasileiros.” Accessed March 16, 2021. https://www.cenegeo.com.br/rede-grav-absoluta/rede-absoluta-de-outros-estados.
Drewes, H., F. G. Kuglitsch, J. Adám, and S. Rózsa. 2016. “The geodesist’s handbook 2016.” J. Geod. 90 (10): 907–1205. https://doi.org/10.1007/s00190-016-0948-z.
Forsberg, R. 1984. A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Columbus, OH: Dept. of Geodetic Science, Surveying of Ohio State Univ.
Forsberg, R., and C. C. Tscherning. 2008. An overview manual for the GRAVSOFT geodetic gravity field modelling programs. Lyngby, Denmark: Technical Univ. of Denmark.
Förste, C., S. Bruinsma, O. Abrikosov, J. Lemoine, T. Schaller, H. Götze, J. Ebbing, J. Marty, F. Flechtner, and G. Balmino. 2014. “EIGEN-6C4.” In The latest combined global gravity field model including GOCE data up to degree and order, 2190. Potsdam, Germany: German Research Centre for Geosciences.
Gilardoni, M., M. Reguzzoni, and D. Sampietro. 2016. “GECO: A global gravity model by locally combining GOCE data and EGM2008.” Stud. Geophys. Geod. 60 (2): 228–247. https://doi.org/10.1007/s11200-015-1114-4.
Guimarães, G. N., D. Blitzkow, A. C. O. C. de Matos, C. A. C. C. Junior, and M. E. B. Inoue. 2020. “30 anos de mediç ões gravimétricas absolutas no brasil.” Revista Brasileira de Cartografia 72 (1): 159–176. https://doi.org/10.14393/rbcv72n1-50229.
Heiskanen, W. A., and H. Moritz. 1967. Physical geodesy. San Francisco: Freeman & Co.
Hofmann-Wellenhof, B., and H. Moritz. 2006. Physical geodesy. New York: Springer Science & Business Media.
Holota, P. 2004. “Some topics related to the solution of boundary-value problems in geodesy.” In Proc., 5th Hotine-Marussi Symp. on Mathematical Geodesy, 189–200. Munich, Germany: International Association of Geodesy.
IAG (International Association of Geodesy). 2017. “Description of the global geodetic reference frame.” In Vol. 91 of Position Paper Adopted by the IAG Executive Committee, 113–116. Munich, Germany: IAG.
IBGE (Instituto Brasileiro de Geografia e Estatística). n.d.-a. “IBGE-PPP: Serviço online para pós-processamento de dados GNSS.” Accessed March 16, 2021. https://www.ibge.gov.br/.
IBGE (Instituto Brasileiro de Geografia e Estatística). n.d.-b. “Estrutura territorial.” Accessed March 16, 2021. https://www.ibge.gov.br/geociencias/organizacao-do-territorio/estrutura-territorial/.
IBGE (Instituto Brasileiro de Geografia e Estatística). 2019. Reajustamento da rede altimétrica com números geopotenciais. Rio de Janeiro, Brazil: IBGE.
ICGEM (International Centre for Global Earth Models). n.d. “Calculation of gravity field functionals on user-defined points.” Accessed February 12, 2021. http://icgem.gfz-potsdam.de/home.
INCT GNSS-NavAer (Instituto Nacional de Ciência e Tecnologia Projeto Global Navigation Satellite Systema para Navegação Aérea). n.d. “O projecto.” Accessed February 12, 2021. https://inct-gnss-navaer.fct.unesp.br/pt/projeto.php.
ISG (International Service for the Geoid). n.d. “Instituto nacional de Ciênciae tecnologia projeto global navigation satellite systema para navegação aérea.” Accessed March 16, 2021. https://www.isgeoid.polimi.it/.
Liang, W., J. Li, X. Xu, S. Zhang, and Y. Zhao. 2020. “A high-resolution earth’s gravity field model SGG-UGM-2 from GOCE, GRACE, satellite altimetry, and EGM2008.” Engineering 6 (8): 860–878. https://doi.org/10.1016/j.eng.2020.05.008.
Molodenskii, M., V. Eremeev, and M. Yurkina. 1962. Methods for study of the external gravitation field and figure of the Earth. Washington, DC: US Department of Commerce.
Moritz, H. 1989. Advanced physical geodesy. Karlsruhe, Germany: Wichmann.
Nicacio, E., R. Dalazoana, and S. De Freitas. 2018. “Evaluation of recent combined global geopotential models in Brazil.” J. Geodetic Sci. 8 (1): 72–82. https://doi.org/10.1515/jogs-2018-0008.
Pail, R., T. Fecher, D. Barnes, J. Factor, S. Holmes, T. Gruber, and P. Zingerle. 2018. “Short note: The experimental geopotential model XGM2016.” J. Geod. 92 (4): 443–451. https://doi.org/10.1007/s00190-017-1070-6.
Plag, H.-P., and M. Pearlman. 2009. The global geodetic observing system: Meeting the requirements of a global society on a changing planet in 2020. New York: Springer.
Stokes, G. G. 1849. “On the variation of gravity on the surface of the Earth.” Trans. Cambridge Philos. Soc. 8: 672–695.
Tenzer, R., J. Mikuška, I. Marušiak, R. Pašteka, R. Karcol, P. Vajda, and P. Sirguey. 2010. “Computation of the atmospheric gravity correction in New Zealand.” N. Z. J. Geol. Geophys. 53 (4): 333–340. https://doi.org/10.1080/00288306.2010.510171.
Torge, W., L. Timmen, R. Röder, and M. Schnül. 1994. “The IFE absolute gravity program South America 1988-1991, veröff, deustche geod.” Komm. Bei der Bayer. Akad. D. Wissensch. Teihe B 299.
Tozer, B., D. T. Sandwell, W. H. Smith, C. Olson, J. Beale, and P. Wessel. 2019. “Global bathymetry and topography at 15 arc sec: SRTM15+.” Earth Space Sci. 6 (10): 1847–1864. https://doi.org/10.1029/2019EA000658.
Tscherning, C. 1971. “Collocation methods in harmonic spaces.” In Proc., Free Boundary Value Problems Meeting Born. Munich, Germany: International Association of Geodesy.
Tscherning, C. C., and R. H. Rapp. 1974. Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variance models. Scientific Interim Rep. Columbus, OH: Ohio State Univ.
Vermeer, M. 2020. Physical geodesy. Helsinki, Finland: Aalto Univ.
Vu, D. T., S. Bruinsma, and S. Bonvalot. 2019. “A high-resolution gravimetric quasigeoid model for Vietnam.” Earth Planets Space 71 (65). 1–16. https://doi.org/10.1186/s40623-019-1045-3.
Wang, Y. M. 2016. Geodetic boundary value problems. Cham, Switzerland: Springer.
Wessel, P., W. H. Smith, R. Scharroo, J. Luis, and F. Wobbe. 2013. “Generic mapping tools: Improved version released.” EOS Trans. Am. Geophys. Union 94 (45): 409–410. https://doi.org/10.1002/2013EO450001.
Wziontek, H., S. Bonvalot, R. Falk, G. Gabalda, J. Mäkinen, V. Pálinkás, A. Rülke, and L. Vitushkin. 2021. “Status of the international gravity reference system and frame.” J. Geod. 95 (7): 1–9. https://doi.org/10.1007/s00190-020-01438-9.
Zingerle, P., R. Pail, T. Gruber, and X. Oikonomidou. 2020. “The combined global gravity field model XGM2019e.” J. Geod. 94 (7): 1–12. https://doi.org/10.1007/s00190-020-01398-0.

Information & Authors

Information

Published In

Go to Journal of Surveying Engineering
Journal of Surveying Engineering
Volume 148Issue 3August 2022

History

Received: May 13, 2021
Accepted: Nov 24, 2021
Published online: Mar 16, 2022
Published in print: Aug 1, 2022
Discussion open until: Aug 16, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Gabriel do Nascimento Guimarães, D.Sc. https://orcid.org/0000-0003-4380-4650 [email protected]
Assistant Professor, Instituto de Geografia, Universidade Federal de Uberlndia, Campus Monte Carmelo, Rod. LMG 745, km 1, s/n, Monte Carmelo, MG 38500-000, Brazil (corresponding author). ORCID: https://orcid.org/0000-0003-4380-4650. Email: [email protected]
Denizar Blitzkow, D.Sc.
Associate Professor, Departamento de Engenharia de Transportes, Universidade de São Paulo, Programa de Pós-Graduação em Engenharia de Transportes, Avenida Professor Almeida Prado, Travessa 2, 83, Cidade Universitária, São Paulo, SP 05508-070, Brazil.
P.Eng.
Surveying Engineer, Departamento de Engenharia de Transportes, Universidade de São Paulo, Programa de Pós-Graduação em Engenharia de Transportes, Avenida Professor Almeida Prado, Travessa 2, 83, Cidade Universitária, São Paulo, SP 05508-070, Brazil. ORCID: https://orcid.org/0000-0003-1499-6956
Ana Cristina Oliveira Cancoro de Matos, D.Sc. https://orcid.org/0000-0002-0040-588X
Researcher, Centro de Estudo de Geodesia, Rua Cotoxó, 611, Conj. 75, Perdizes, São Paulo, SP 05021-000, Brazil. ORCID: https://orcid.org/0000-0002-0040-588X
Mariana Eiko Borba Inoue https://orcid.org/0000-0002-2008-3769
P.Eng.
Surveying Engineer, Instituto de Geografia, Universidade Federal de Uberlndia (UFU), Campus Monte Carmelo, Rod. LMG 745, km 1, s/n, Monte Carmelo, MG 38500-000, Brazil. ORCID: https://orcid.org/0000-0002-2008-3769
Sean Luis de Oliveira
Surveying Engineer, Instituto de Geografia, Universidade Federal de Uberlndia (UFU), Campus Monte Carmelo, Rod. LMG 745, km 1, s/n, Monte Carmelo, MG 38500-000, Brazil.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share