Abstract

Interferometric synthetic aperture radar (InSAR) is a cost-effective method for displacement measurement at dams and reservoir banks, and is especially relevant for structures without embedded equipment or rarely monitored. However, the lack of redundant observations prevents the determination of a posteriori variances for InSAR measurements, which limits the uptake of the InSAR technology for structure monitoring. This paper presents a methodology for the integration of persistent scatterer interferometry (PSI) and Global Navigation Satellite System (GNSS) displacement measurements. Double differences between PSI and GNSS data are used as observations in a redundant network connecting the points of interest, with GNSS data used to constrain PSI measurements. This procedure allows the determination of adjusted displacements and a posteriori variances at all network points. Maximum uncertainty of 3 mm was achieved for displacements along the SAR sensor line-of-sight at both the dam and its surrounding slopes. The proposed method is of interest for monitoring purposes, because it allows displacement measurement at both the structure and its surroundings, together with the displacement uncertainty, which aids decision makers in the planning of maintenance operations for the whole area influenced by the dam.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are proprietary or confidential in nature and may only be provided with restrictions. The data are confidential and may be provided only with authorization from the dam owner. The software for data integration is proprietary and may be available only with authorization from the National Laboratory for Civil Engineering Board of Directors.

Acknowledgments

The authors thank Engineer Maria João Henriques (LNEC) for making available the computational resources for InSAR processing and Eng. Piteira Gomes (LNEC) for discussions about the dam and slope behaviors. Acknowledgements are due to the European Space Agency for providing the Sentinel-1 images, to the European Environmental Agency for the DEM, to EuroGeographics for the administrative boundaries, and to the Portuguese General-Directorate of the Territory for the orthophotographs. This work was supported by the Portuguese Foundation for Science and Technology through Grant No. SFRH/BD/115882/2016.

References

Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti. 2002. “A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms.” IEEE Trans. Geosci. Remote Sens. 40 (11): 2375–2383. https://doi.org/10.1109/TGRS.2002.803792.
Berndt, D., and J. Clifford. 1994. “Using dynamic time warping to find patterns in time series.” Work. Knowl. Discov. Databases 398 (16): 359–370.
Chen, Q., G. Liu, X. Ding, J.-C. Hu, L. Yuan, P. Zhong, and M. Omura. 2010. “Tight integration of GPS observations and persistent scatterer InSAR for detecting vertical ground motion in Hong Kong.” Int. J. Appl. Earth Obs. Geoinf. 12 (6): 477–486. https://doi.org/10.1016/j.jag.2010.05.002.
Colesanti, C., A. Ferretti, F. Novali, C. Prati, and F. Rocca. 2003. “SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique.” IEEE Trans. Geosci. Remote Sens. 41 (7): 1685–1701. https://doi.org/10.1109/TGRS.2003.813278.
Comissão Nacional Portuguesa das Grandes Barragens. 2021. “Barragem do baixo sabor.” Accessed April 22, 2021. https://cnpgb.apambiente.pt/gr_barragens/gbportugal/FICHAS/BaixoSaborficha.htm.
Copernicus Programme. 2020. “EU-DEM v1.1.” Accessed March 9, 2020. https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1?tab=metadata.
Di Martire, D., R. Iglesias, D. Monells, G. Centolanza, S. Sica, M. Ramondini, L. Pagano, J. J. Mallorquí, and D. Calcaterra. 2014. “Comparison between Differential SAR interferometry and ground measurements data in the displacement monitoring of the earth-dam of Conza della Campania (Italy).” Remote Sens. Environ. 148 (May): 58–69. https://doi.org/10.1016/j.rse.2014.03.014.
Du, Z., L. Ge, A. H.-M. Ng, Q. Zhu, F. G. Horgan, and Q. Zhang. 2020. “Risk assessment for tailings dams in Brumadinho of Brazil using InSAR time series approach.” Sci. Total Environ. 717 (May): 137125. https://doi.org/10.1016/j.scitotenv.2020.137125.
EDP Energias de Portugal. 2017. “Central hidroelétrica de Baixo Sabor.” Accessed September 17, 2020. https://portugal.edp.com/pt-pt/central-hidroeletrica-de-baixo-sabor.
Emadali, L., M. Motagh, and M. H. Haghighi. 2017. “Characterizing post-construction settlement of the Masjed-Soleyman embankment dam, Southwest Iran, using TerraSAR-X SpotLight radar imagery.” Eng. Struct. 143 (Jul): 261–273. https://doi.org/10.1016/j.engstruct.2017.04.009.
Gahalaut, V. K., R. K. Yadav, K. M. Sreejith, K. Gahalaut, R. Bürgmann, R. Agrawa, S. P. Sati, and A. Bansal. 2017. “InSAR and GPS measurements of crustal deformation due to seasonal loading of Tehri reservoir in Garhwal Himalaya, India.” Geophys. J. Int. 209 (1): 425–433. https://doi.org/10.1093/gji/ggx015.
Gudmundsson, S., M. T. Gudmundsson, H. Björnsson, F. Sigmundsson, H. Rott, and J. M. Carstensen. 2002. “Three-dimensional glacier surface motion maps at the Gjálp eruption site, Iceland, inferred from combining InSAR and other ice-displacement data.” Ann. Glaciol. 34 (2000): 315–322. https://doi.org/10.3189/172756402781817833.
Guglielmino, F., G. Nunnari, G. Puglisi, and A. Spata. 2011. “Simultaneous and integrated strain tensor estimation from geodetic and satellite deformation measurements to obtain three-dimensional displacement maps.” IEEE Trans. Geosci. Remote Sens. 49 (6): 1815–1826. https://doi.org/10.1109/TGRS.2010.2103078.
Hooper, A., H. Zebker, P. Segall, and B. Kampes. 2004. “A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers.” Geophys. Res. Lett. 31 (23): 1–5. https://doi.org/10.1029/2004GL021737.
Komac, M., R. Holley, P. Mahapatra, H. van der Marel, and M. Bavec. 2015. “Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides.” Landslides 12 (2): 241–257. https://doi.org/10.1007/s10346-014-0482-0.
Li, T., M. Motagh, M. Wang, W. Zhang, C. Gong, X. Xiong, J. He, L. Chen, and J. Liu. 2019. “Earth and rock-filled dam monitoring by high-resolution X-band interferometry: Gongming dam case study.” Remote Sens. 11 (3): 246. https://doi.org/10.3390/rs11030246.
Lin, D., J. Zhu, C. Li, M. Liao, and D. Zheng. 2020. “Bias reduction method for parameter inversion of ill-posed surveying model.” J. Surv. Eng. 146 (3): 04020011. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000321.
LNEC (Laboratório Nacional de Engenharia Civil). 2001. O Método da Variação de Coordenadas na Observação Geodésica de Barragens. Lisbon, Portugal: LNEC.
LNEC (Laboratório Nacional de Engenharia Civil). 2017. Barragem do Baixo Sabor: Resultados Preliminares da Monitorização de Deslocamentos com o GNSS. Lisbon, Portugal: LNEC.
Mehrabi, H., B. Voosoghi, M. Motagh, and R. F. Hanssen. 2019. “Three-dimensional displacement fields from InSAR through Tikhonov regularization and least-squares variance component estimation.” J. Surv. Eng. 145 (4): 04019011. https://doi.org/10.1061/(asce)su.1943-5428.0000289.
Milillo, P., D. Perissin, J. T. Salzer, P. Lundgren, G. Lacava, G. Milillo, and C. Serio. 2016. “Monitoring dam structural health from space: Insights from novel InSAR techniques and multi-parametric modeling applied to the Pertusillo dam Basilicata, Italy.” Int. J. Appl. Earth Obs. Geoinf. 52 (Oct): 221–229. https://doi.org/10.1016/j.jag.2016.06.013.
Mittermayer, E. 1972. “A generalisation of the least-squares method for the adjustment of free networks.” Bull. Géodésique (1946–1975) 104 (1): 139–157.
Paronuzzi, P., E. Rigo, and A. Bolla. 2013. “Influence of filling–drawdown cycles of the Vajont reservoir on Mt. Toc slope stability.” Geomorphology 191 (Jun): 75–93. https://doi.org/10.1016/j.geomorph.2013.03.004.
Perissin, D., and T. Wang. 2012. “Repeat-pass SAR interferometry with partially coherent targets.” IEEE Trans. Geosci. Remote Sens. 50 (1): 271–280. https://doi.org/10.1109/TGRS.2011.2160644.
Perissin, D., Z. Wang, and T. Wang. 2011. “The SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoring in China.” In Proc., 34th Int. Symp. for Remote Sensing of the Environment (ISRSE). Hannover, Germany: International Society for Photogrammetry and Remote Sensing.
Pipitone, C., A. Maltese, G. Dardanelli, M. Lo Brutto, and G. La Loggia. 2018. “Monitoring water surface and level of a reservoir using different remote sensing approaches and comparison with dam displacements evaluated via GNSS.” Remote Sens. 10 (1): 71. https://doi.org/10.3390/rs10010071.
Polcari, M., M. Palano, J. Fernández, S. V. Samsonov, S. Stramondo, and S. Zerbini. 2016. “3D displacement field retrieved by integrating Sentinel-1 InSAR and GPS data: The 2014 South Napa earthquake.” Eur. J. Remote Sens. 49 (1): 1–13. https://doi.org/10.5721/EuJRS20164901.
Roque, D., D. Perissin, A. P. Falcão, C. Amado, J. V. Lemos, and A. M. Fonseca. 2018. “Analysis of InSAR displacements for the slopes around Odelouca reservoir.” Procedia Comput. Sci. 138 (Jan): 338–345. https://doi.org/10.1016/j.procs.2018.10.048.
Saleh, M., F. Masson, A.-M. S. Mohamed, J.-P. Boy, N. Abou-Aly, and A. Rayan. 2018. “Recent ground deformation around lake Nasser using GPS and InSAR, Aswan, Egypt.” Tectonophysics 744 (Oct): 310–321. https://doi.org/10.1016/j.tecto.2018.07.005.
Scaioni, M., M. Marsella, M. Crosetto, V. Tornatore, and J. Wang. 2018. “Geodetic and remote-sensing sensors for dam deformation monitoring.” Sensors (Switzerland) 18 (11): 3682. https://doi.org/10.3390/s18113682.
Schlögel, R., C. Doubre, J.-P. Malet, and F. Masson. 2015. “Landslide deformation monitoring with ALOS/PALSAR imagery: A D-InSAR geomorphological interpretation method.” Geomorphology 231 (Jan): 314–330. https://doi.org/10.1016/j.geomorph.2014.11.031.
Shi, X., C. Yang, L. Zhang, H. Jiang, M. Liao, L. Zhang, and X. Liu. 2019. “Mapping and characterizing displacements of active loess slopes along the upstream Yellow River with multi-temporal InSAR datasets.” Sci. Total Environ. 674 (Jul): 200–210. https://doi.org/10.1016/j.scitotenv.2019.04.140.
Shi, X., L. Zhang, M. Tang, M. Li, and M. Liao. 2017. “Investigating a reservoir bank slope displacement history with multi-frequency satellite SAR data.” Landslides 14 (6): 1961–1973. https://doi.org/10.1007/s10346-017-0846-3.
Sousa, R. 2011. Controlo de Qualidade na Execução de Fundações numa Barragem—Aproveitamento Hidroelétrico do Baixo Sabor—Estudo de Caso. Libson, Portugal: Univ. of Porto.
Tomás, R., M. Cano, J. García-Barba, F. Vicente, G. Herrera, J. M. Lopez-Sanchez, and J. J. Mallorquí. 2013. “Monitoring an earthfill dam using differential SAR interferometry: La Pedrera dam, Alicante, Spain.” Eng. Geol. 157 (May): 21–32. https://doi.org/10.1016/j.enggeo.2013.01.022.
Ullo, S. L., P. Addabbo, D. Di Martire, S. Sica, N. Fiscante, L. Cicala, and C. V. Angelino. 2019. “Application of DInSAR technique to high coherence Sentinel-1 images for dam monitoring and result validation through in situ measurements.” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12 (3): 875–890. https://doi.org/10.1109/JSTARS.2019.2896989.
Wang, Q. Q., Q. H. Huang, N. He, B. He, Z. C. Wang, and Y. A. Wang. 2020. “Displacement monitoring of upper Atbara dam based on time series InSAR.” Surv. Rev. 52 (375): 485–496. https://doi.org/10.1080/00396265.2019.1643529.
Wang, T., D. Perissin, M. Liao, and F. Rocca. 2008. “Deformation monitoring by long term D-InSAR analysis in Three Gorges area, China.” Int. Geosci. Remote Sens. Symp. 4 (1): 7–10. https://doi.org/10.1109/IGARSS.2008.4779642.
Wang, T., D. Perissin, F. Rocca, and M. S. Liao. 2011. “Three Gorges Dam stability monitoring with time-series InSAR image analysis.” Sci. China Earth Sci. 54 (5): 720–732. https://doi.org/10.1007/s11430-010-4101-1.
Welch, B. L. 1938. “The significance of the difference between two means when the population variances are unequal.” Biometrika 29 (3–4): 350–362. https://doi.org/10.2307/2332010.
Yazici, B. V., and E. T. Gormus. 2020. “Investigating persistent scatterer InSAR (PSInSAR) technique efficiency for landslides mapping: A case study in Artvin dam area, in Turkey.” Geocarto Int. 2020 (Oct): 1–19. https://doi.org/10.1080/10106049.2020.1818854.
Ye, X., H. Kaufmann, and X. F. Guo. 2004. “Landslide monitoring in the Three Gorges area using D-InSAR and corner reflectors.” Photogramm. Eng. Remote Sens. 70 (10): 1167–1172. https://doi.org/10.14358/PERS.70.10.1167.
Zhu, W., Q. Zhang, X. Ding, C. Zhao, C. Yang, F. Qu, and W. Qu. 2014. “Landslide monitoring by combining of CR-InSAR and GPS techniques.” Adv. Space Res. 53 (3): 430–439. https://doi.org/10.1016/j.asr.2013.12.003.

Information & Authors

Information

Published In

Go to Journal of Surveying Engineering
Journal of Surveying Engineering
Volume 147Issue 3August 2021

History

Received: Oct 29, 2020
Accepted: Mar 30, 2021
Published online: May 13, 2021
Published in print: Aug 1, 2021
Discussion open until: Oct 13, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Doctoral Research Fellow, Concrete Dam Dept., National Laboratory for Civil Engineering, Avenida do Brasil 101, 1700-066 Lisboa, Portugal; Dept. of Civil Engineering, Architecture and Georesources and CERIS, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal (corresponding author). ORCID: https://orcid.org/0000-0002-2140-3541. Email: [email protected]
Assistant Researcher, Concrete Dam Dept., National Laboratory for Civil Engineering, Avenida do Brasil 101, 1700-066 Lisboa, Portugal. ORCID: https://orcid.org/0000-0002-5277-6068. Email: [email protected]
Daniele Perissin, Ph.D. [email protected]
Director, RASER Limited, Unit 609, 9 Wing Hong St., Lai Chi Kok, Hong Kong. Email: [email protected]
Ana Paula Falcão, Ph.D. [email protected]
Assistant Professor, Dept. of Civil Engineering, Architecture and Georesources and CERIS, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal. Email: [email protected]
Principal Researcher, Concrete Dam Dept., National Laboratory for Civil Engineering, Avenida do Brasil 101, 1700-066 Lisboa, Portugal. ORCID: https://orcid.org/0000-0003-1324-7662. Email: [email protected]
Senior Researcher, Concrete Dam Dept., National Laboratory for Civil Engineering, Avenida do Brasil 101, 1700-066 Lisboa, Portugal. ORCID: https://orcid.org/0000-0001-9900-7015. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Precursory motion and deformation mechanism of the 2018 Xe Pian-Xe Namnoy dam Collapse, Laos: Insights from satellite radar interferometry, International Journal of Applied Earth Observation and Geoinformation, 10.1016/j.jag.2022.102797, 109, (102797), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share