Technical Papers
Feb 19, 2020

Ambiguity-Resolved Real-Time Precise Point Positioning as a Potential Fill-In Service for Sparse CORS Networks

Publication: Journal of Surveying Engineering
Volume 146, Issue 2

Abstract

Precise point positioning (PPP) employs readily available Global Navigation Satellite System (GNSS) orbit- and clock-correction products to perform point positioning using a single GNSS receiver. Recently, attention has turned to ambiguity-resolved real-time PPP (AR-RT-PPP), allowing PPP to potentially offer a viable alternative to real-time kinematic (RTK) positioning provided by local or regional Continuously Operating Reference Station (CORS) networks. Using an extensive data set covering all of New South Wales (NSW), Australia, this paper showed that AR-RT-PPP is achievable, on average providing positioning quality down to a few centimeters with an average ambiguity-resolution success rate of 84.3% and average convergence times of between 40 min and 1 h. The paper highlighted the advantages and disadvantages of this positioning technique from a user’s perspective and then outlined the current limitations and possible future direction of AR-RT-PPP as a fill-in service for sparser local or regional CORS networks.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code used during the study were provided by a third party (modified RTKLIB software, real-time correction products). Direct requests for these materials may be made to the provider as indicated in the Acknowledgements.

Acknowledgments

Dr. Ken Harima of RMIT University, Melbourne, is gratefully acknowledged for providing the modified RTKLIB software used in this study. The International GNSS Service is thanked for providing the real-time correction products required for PPP processing.

References

Altamimi, Z., X. Collilieux, and L. Métivier. 2011. “ITRF2008: An improved solution of the international terrestrial reference frame.” J. Geod. 85 (8): 457–473. https://doi.org/10.1007/s00190-011-0444-4.
Bisnath, S., and P. Collins. 2012. “Recent developments in precise point positioning.” Geomatica 66 (2): 103–111. https://doi.org/10.5623/cig2012-023.
Chang, X.-W., X. Yang, and T. Zhou. 2005. “MLAMBDA: A modified LAMBDA method for integer least-squares estimation.” J. Geod. 79 (9): 552–565. https://doi.org/10.1007/s00190-005-0004-x.
Chen, X., et al. 2011. “Trimble RTX, an innovative new approach for Network RTK.” In Proc., ION GNSS 2011, 2214–2219. Manassas, VA: Institute of Navigation.
Choy, S., S. Bisnath, and C. Rizos. 2017. “Uncovering common misconceptions in GNSS precise point positioning and its future prospect.” GPS Solut. 21 (1): 13–22. https://doi.org/10.1007/s10291-016-0545-x.
Choy, S., K. Harima, M. Choudhury, C. Rizos, and S. Kogure. 2015a. “Real-time precise point positioning using QZSS LEX augmentation corrections in Australia.” In Proc., Int. Symp. on GNSS 2015 (ISGNSS2015). Tokyo: Institute of Positioning, Navigation and Timing of Japan.
Choy, S., K. Harima, Y. Li, M. Choudhury, C. Rizos, Y. Wakabayashi, and S. Kogure. 2015b. “GPS precise point positioning with the Japanese Quasi-Zenith satellite system LEX augmentation corrections.” J. Navig. 68 (4): 769–783. https://doi.org/10.1017/S0373463314000915.
CNES (French Space Agency). 2019. “The PPP-WIZARD project.” Accessed October 21, 2019. http://www.ppp-wizard.net/caster.html.
Collins, P., and S. Bisnath. 2011. “Issues in ambiguity resolution for precise point positioning.” In Proc., ION GNSS 2011, 679–687. Manassas, VA: Institute of Navigation.
Collins, P., S. Bisnath, F. Lahaye, and P. Heroux. 2010. “Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing.” Navigation 57 (2): 123–135. https://doi.org/10.1002/j.2161-4296.2010.tb01772.x.
Collins, P., F. Lahaye, and S. Bisnath. 2012. “External ionospheric constraints for improved PPP-AR initialisation and a generalised local augmentation concept.” In Proc., ION GNSS 2012, 3055–3065. Manassas, VA: Institute of Navigation.
Deo, M., and A. El-Mowafy. 2016. “Triple frequency precise point positioning with multi-constellation GNSS.” In Proc., Int. GNSS Soc. Symp. (IGNSS2016). Sydney, Australia: International GNSS Society.
Edwards, S. J., P. J. Clarke, N. T. Penna, and S. Goebell. 2010. “An examination of network RTK GPS services in Great Britain.” Surv. Rev. 42 (316): 107–121. https://doi.org/10.1179/003962610X12572516251529.
El-Mowafy, A., M. Deo, and C. Rizos. 2016. “On biases in precise point positioning with multi-constellation and multi-frequency GNSS data.” Meas. Sci. Technol. 27 (3): 035102. https://doi.org/10.1088/0957-0233/27/3/035102.
Elsobeiey, M. 2015. “Precise point positioning using triple-frequency GPS measurements.” J. Navig. 68 (3): 480–492. https://doi.org/10.1017/S0373463314000824.
Elsobeiey, M., and S. Al-Harbi. 2016. “Performance of real-time precise point positioning using IGS real-time service.” GPS Solut. 20 (3): 565–571. https://doi.org/10.1007/s10291-015-0467-z.
GA (Geoscience Australia). 2019a. “AUSPOS-Online GPS processing service.” Accessed October 21, 2019. http://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos.
GA (Geoscience Australia). 2019b. “Positioning Australia.” Accessed October 21, 2019. https://www.ga.gov.au/scientific-topics/positioning-navigation/positioning-australia.
Gao, Y., and C. Kongzhe. 2004. “Performance analysis of precise point positioning using real-time orbit and clock products.” J. Global Positioning Syst. 3 (1–2): 95–100. https://doi.org/10.5081/jgps.3.1.95.
Ge, M., G. Gendt, M. Rothacher, C. Shi, and L. Liu. 2008. “Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations.” J. Geod. 82 (7): 389–399. https://doi.org/10.1007/s00190-007-0187-4.
Geng, J., and Y. Bock. 2013. “Triple-frequency GPS precise point positioning with rapid ambiguity resolution.” J. Geod. 87 (5): 449–460. https://doi.org/10.1007/s00190-013-0619-2.
Geng, J., X. Meng, A. H. Dodson, and F. N. Teferle. 2010. “Integer ambiguity resolution in precise point positioning: Method comparison.” J. Geod. 84 (9): 569–581. https://doi.org/10.1007/s00190-010-0399-x.
Geng, J., C. Shi, M. Ge, A. H. Dodson, Y. Lou, Q. Zhao, and J. Liu. 2012. “Improving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioning.” J. Geod. 86 (8): 579–589. https://doi.org/10.1007/s00190-011-0537-0.
Geng, J., F. N. Teferle, X. Meng, and A. H. Dodson. 2011. “Towards PPP-RTK: Ambiguity resolution in real-time precise point positioning.” Adv. Space Res. 47 (10): 1664–1673. https://doi.org/10.1016/j.asr.2010.03.030.
Grinter, T., and C. Roberts. 2011. “Precise point positioning: Where are we now?” In Proc., Int. GNSS Soc. Symp. (IGNSS2011). Sydney, Australia: International GNSS Society.
Grinter, T., and C. Roberts. 2013. “Real time precise point positioning: Are we there yet?” In Proc., Int. GNSS Soc. Symp. (IGNSS2013). Sydney, Australia: International GNSS Society.
Hadas, T., and J. Bosy. 2015. “IGS RTS precise orbits and clocks verification and quality degradation over time.” GPS Solut. 19 (1): 93–105. https://doi.org/10.1007/s10291-014-0369-5.
Håkansson, M., A. B. O. Jensen, M. Horemuz, and G. Hedling. 2017. “Review of code and phase biases in multi-GNSS positioning.” GPS Solut. 21 (3): 849–860. https://doi.org/10.1007/s10291-016-0572-7.
Harima, K., S. Choy, Y. Li, T. Grinter, M. Choudhury, C. Rizos, Y. Wakabayashi, and K. Satoshi. 2014. “Performance of real-time precise point positioning using MADOCA-LEX augmentation messages.” In Proc., XXV FIG Int. Congress (FIG2014). Copenhagen, Denmark: International Federation of Surveyors.
Heroux, P., and J. Kouba. 1995. “GPS precise point positioning with a difference.” In Proc., Geomatics ’95. Sidney, BC: Natural Resources Canada.
IGS (International GNSS Service). 2019. “Real-time service.” Accessed October 21, 2019. http://www.igs.org/rts/products.
Janssen, V., and J. Haasdyk. 2011. “Assessment of network RTK performance using CORSnet-NSW.” In Proc., Int. GNSS Soc. Symp. (IGNSS2011). Sydney, Australia: International GNSS Society.
Janssen, V., J. Haasdyk, and S. McElroy. 2016. “CORSnet-NSW: A success story.” In Proc., Association of Public Authority Surveyors Conf. (APAS2016), 10–28. Bathurst, Australia: Association of Public Authority Surveyors.
Jensen, A. B. O., and O. Ovstedal. 2008. “The effect of different tropospheric models on precise point positioning in kinematic mode.” Surv. Rev. 40 (308): 173–187. https://doi.org/10.1179/003962608X290979.
Kouba, J. 2015. “A guide to using the IGS products.” Accessed October 21, 2019. http://kb.igs.org/hc/en-us/articles/201271873-A-Guide-to-Using-the-IGS-Products.
Laurichesse, D., F. Mercier, J. P. Berthias, P. Broca, and L. Cerri. 2009. “Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination.” Navigation 56 (2): 135–149. https://doi.org/10.1002/j.2161-4296.2009.tb01750.x.
Leandro, R., et al. 2011. “RTX positioning: The next generation of cm-accuracy real-time GNSS positioning.” In Proc., ION GNSS 2011, 1460–1475. Manassas, VA: Institute of Navigation.
Li, T., J. Wang, and D. Laurichesse. 2014a. “Modeling and quality control for reliable precise point positioning integer ambiguity resolution with GNSS modernization.” GPS Solut. 18 (3): 429–442. https://doi.org/10.1007/s10291-013-0342-8.
Li, X., M. Ge, X. Dai, X. Ren, M. Fritsche, J. Wickert, and H. Schuh. 2015. “Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo.” J. Geod. 89 (6): 607–635. https://doi.org/10.1007/s00190-015-0802-8.
Li, X., M. Ge, J. Dousa, and J. Wickert. 2014b. “Real-time precise point positioning regional augmentation for large GPS reference networks.” GPS Solut. 18 (1): 61–71. https://doi.org/10.1007/s10291-013-0310-3.
Li, X., M. Ge, H. Zhang, and J. Wickert. 2013. “A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning.” J. Geod. 87 (5): 405–416. https://doi.org/10.1007/s00190-013-0611-x.
Li, X., X. Zhang, and M. Ge. 2011. “Regional reference network augmented precise point positioning for instantaneous ambiguity resolution.” J. Geod. 85 (3): 151–158. https://doi.org/10.1007/s00190-010-0424-0.
Liu, T., Y. Yuan, B. Zhang, N. Wang, B. Tan, and Y. Chen. 2017a. “Multi-GNSS precise point positioning (MGPPP) using raw observations.” J. Geod. 91 (3): 253–268. https://doi.org/10.1007/s00190-016-0960-3.
Liu, Y., S. Ye, W. Song, Y. Lou, and D. Chen. 2017b. “Integrating GPS and BDS to shorten the initialization time for ambiguity-fixed PPP.” GPS Solut. 21 (2): 333–343. https://doi.org/10.1007/s10291-016-0525-1.
Mozo, A., J. D. Calle, P. Navarro, R. Piriz, D. Rodriguez, and G. Tobias. 2012. “Demonstrating in-the-field real-time precise positioning.” In Proc., ION GNSS 2012, 3066–3076. Manassas, VA: Institute of Navigation.
Nardo, A., R. Drescher, M. Brandl, X. Chen, H. Landau, C. Rodriguez-Solano, S. Seeger, and U. Weinbach. 2015. “Experiences with Trimble CenterPoint RTX with fast convergence.” In Proc., European Navigation Conf. (ENC2015). Prague, Czech Republic: European Global Navigation Satellite Systems Agency.
NOAA (National Oceanic and Atmospheric Administration Space Weather Prediction Center). 2019. “Alerts, watches and warnings.” Accessed October 21, 2019. https://www.swpc.noaa.gov/products/alerts-watches-and-warnings.
NSW Spatial Services. 2019. “CORSnet-NSW.” Accessed October 21, 2019. http://www.corsnet.com.au/.
Odijk, D., A. Khodabandeh, N. Nadarajah, M. Choudhury, B. Zhang, W. Li, and P. J. G. Teunissen. 2017. “PPP-RTK by means of S-system theory: Australian network and user demonstration.” J. Spatial Sci. 62 (1): 3–27. https://doi.org/10.1080/14498596.2016.1261373.
Odijk, D., B. Zhang, A. Khodabandeh, R. Odolinski, and P. J. G. Teunissen. 2016. “On the estimability of parameters in undifferenced, uncombined GNSS network and PPP-RTK user models by means of S-system theory.” J. Geod. 90 (1): 15–44. https://doi.org/10.1007/s00190-015-0854-9.
Ren, X., S. Choy, K. Harima, and X. Zhang. 2015. “Multi-constellation GNSS precise point positioning using GPS, GLONASS and BeiDou in Australia.” In Proc., Int. GNSS Society Symp. (IGNSS2015). Sydney, Australia: International GNSS Society.
Rizos, C., V. Janssen, C. Roberts, and T. Grinter. 2012. “Precise point positioning: Is the era of differential GNSS positioning drawing to an end?” In Proc., FIG Working Week 2012. Copenhagen, Denmark: International Federation of Surveyors.
Space Weather Live. 2019. “The aurora and solar activity archive.” Accessed October 21, 2019. https://www.spaceweatherlive.com/en/archive.
Takasu, T. 2013. “RTKLIB: An open source program package for GNSS processing.” Accessed October 21, 2019. http://www.rtklib.com/.
Takasu, T., and A. Yasuda. 2009. “Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB.” In Proc., Int. Symp. on GPS/GNSS 2009. Daejeon, South Korea: Chungnam National Univ.
Teunissen, P. J. G., and A. Khodabandeh. 2015. “Review and principles of PPP-RTK methods.” J. Geod. 89 (3): 217–240. https://doi.org/10.1007/s00190-014-0771-3.
Verhagen, S. 2005. “On the reliability of integer ambiguity resolution.” Navigation 52 (2): 99–110. https://doi.org/10.1002/j.2161-4296.2005.tb01736.x.
Wang, Z., Z. Li, L. Wang, X. Wang, and H. Yuan. 2018. “Assessment of multiple GNSS real-time SSR products from different analysis centers.” ISPRS Int. J. Geo-Inf. 7 (3): 85. https://doi.org/10.3390/ijgi7030085.
Weber, G., L. Mervart, A. Stürze, A. Rülke, and D. Stöcker. 2016. BKG Ntrip client (BNC), version 2.12. Frankfurt, Germany: Federal Agency for Cartography and Geodesy (BKG).
Wilgan, K., T. Hadas, P. Hordyniec, and J. Bosy. 2017. “Real-time precise point positioning augmented with high-resolution numerical weather prediction model.” GPS Solut. 21 (3): 1341–1353. https://doi.org/10.1007/s10291-017-0617-6.
Wübbena, G., M. Schmitz, and A. Bagge. 2005. “PPP-RTK: Precise point positioning using state-space representation in RTK networks.” In Proc., ION GNSS 2005, 2584–2594. Manassas, VA: Institute of Navigation.
Zhang, B., P. J. G. Teunissen, and Y. Yuan. 2017. “On the short-term temporal variations of GNSS receiver differential phase biases.” J. Geod. 91 (5): 563–572. https://doi.org/10.1007/s00190-016-0983-9.
Zumberge, J. F., M. B. Heflin, D. C. Jefferson, M. M. Watkins, and F. H. Webb. 1997. “Precise point positioning for the efficient and robust analysis of GPS data from large networks.” J. Geophys. Res. 102 (B3): 5005–5017. https://doi.org/10.1029/96JB03860.

Information & Authors

Information

Published In

Go to Journal of Surveying Engineering
Journal of Surveying Engineering
Volume 146Issue 2May 2020

History

Received: Apr 15, 2019
Accepted: Nov 4, 2019
Published online: Feb 19, 2020
Published in print: May 1, 2020
Discussion open until: Jul 19, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Thomas Grinter [email protected]
Manager Positioning—Survey Operations, Spatial Services, NSW Dept. of Customer Service, 346 Panorama Ave., Bathurst, NSW 2795, Australia. Email: [email protected]
Craig Roberts, Ph.D. [email protected]
Senior Lecturer, School of Civil and Environmental Engineering, Univ. of New South Wales, Sydney, NSW 2052, Australia. Email: [email protected]
Senior Technical Surveyor, Spatial Services, NSW Dept. of Customer Service, 346 Panorama Ave., Bathurst, NSW 2795, Australia (corresponding author). ORCID: https://orcid.org/0000-0002-8882-2353. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share