Technical Papers
Jan 18, 2021

Material Property Uncertainties versus Joint Structural Detailing: Relative Effect on the Seismic Fragility of Reinforced Concrete Frames

Publication: Journal of Structural Engineering
Volume 147, Issue 4

Abstract

This paper investigates the relative effect of material properties and structural details in the joint panels on the seismic fragility of existing reinforced concrete (RC) frames. Five building classes with different structural details (particularly in the joint panels) and material characteristics are defined according to different past design codes, for a three-story and a six-story archetype geometry. Based on nonlinear static or nonlinear dynamic analysis procedures, results from the study show that the effect of structural details on seismic fragility of the considered structures is negligible for damage states involving an essentially elastic behavior. Conversely, it is much higher for life-safety and near-collapse damage states, and it is considerably higher than the effect due to materials. Therefore, in the diagnosis phase, higher emphasis should be given to on-site investigations of actual reinforcement content/layout rather than to invasive material testing. The uncertainty related to the structural details described here is practically related to exterior, rather than interior, joint panels. Cover removal for one of those joints may potentially eliminate this specific uncertainty. As a practical action, in situ testing of RC frames should involve the cover removal of at least one exterior joint panel regardless of the required target “level of knowledge” of the existing structure.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author on request.

Acknowledgments

This study has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 843794 (Marie Skłodowska-Curie Research Grants Scheme MSCA-IF-2018: MULTIRES, MULTI-Level Framework to Enhance Seismic RESilience of RC buildings) for Roberto Gentile; and from the project “Dipartimenti di Eccellenza,” funded by the Italian Ministry of Education, University and Research at IUSS Pavia for Carmine Galasso. Dr Karim Tarbali is gratefully acknowledged for providing the candidate ground motions for this study.

References

ACI (American Concrete Institute). 1956. Building code requirements for structural concrete. ACI 318-56. Farmington Hills, MI: ACI.
ACI (American Concrete Institute). 1966. Recommendations for design of beam-column connections in monolithic reinforced concrete structures. ACI 352-66. Farmington Hills, MI: ACI.
ACI (American Concrete Institute). 1971. Building code requirements for structural concrete. ACI 318-71. Farmington Hills, MI: ACI.
Ancheta, T. D., et al. 2014. “NGA-West2 database.” Earthquake Spectra 30 (3): 989–1005. https://doi.org/10.1193/070913EQS197M.
ASCE. 2017. Seismic evaluation and retrofit of existing buildings. ASCE 41-17. Reston, VA: ASCE.
Baker, J. W. 2015. “Efficient analytical fragility function fitting using dynamic structural analysis.” Earthquake Spectra 31 (1): 579–599. https://doi.org/10.1193/021113EQS025M.
Baker, J. W., and C. Allin Cornell. 2006. “Spectral shape, epsilon and record selection.” Earthquake Eng. Struct. Dyn. 35 (9): 1077–1095. https://doi.org/10.1002/eqe.571.
Berry, M. P., and M. O. Eberhard. 2005. “Practical performance model for bar buckling.” J. Struct. Eng. 131 (7): 1060–1070. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:7(1060).
Bradley, B. A. 2010. “A generalized conditional intensity measure approach and holistic ground-motion selection.” Earthquake Eng. Struct. Dyn. 39 (12): 1321–1342. https://doi.org/10.1002/eqe.995.
Bradley, B. A. 2013. “A critical examination of seismic response uncertainty analysis in earthquake engineering.” Earthquake Eng. Struct. Dyn. 42 (11): 1717–1729. https://doi.org/10.1002/eqe.2331.
Carr, A. J. 2016. RUAUMOKO2D—The Maori God of volcanoes and earthquakes. Christchurch, New Zealand: Ruaumoko Solutions.
Celarec, D., P. Ricci, and M. Dolšek. 2012. “The sensitivity of seismic response parameters to the uncertain modelling variables of masonry-infilled reinforced concrete frames.” Eng. Struct. 35 (Feb): 165–177. https://doi.org/10.1016/j.engstruct.2011.11.007.
Celik, O. C., and B. R. Ellingwood. 2010. “Seismic fragilities for non-ductile reinforced concrete frames—Role of aleatoric and epistemic uncertainties.” Struct. Saf. 32 (Jan): 1–12. https://doi.org/10.1016/j.strusafe.2009.04.003.
CEN (European Committee for Standardization). 2005. Design of structures for earthquake resistance. Part 3: Strengthening and repair of buildings. Eurocode 8. Brussels: CEN.
Consiglio dei Ministri. 1939. Regio Decreto Legge n. 2229 del 16/11/1939. Gazzetta Ufficiale della Repubblica Italiana n.92, 18/04/1940. [In Italian.] Rome: Consiglio dei Ministri.
Consiglio dei Ministri. 1976. Legge n. 176, 26/04/1976. Norme per l’istruzione del servizio sismico e disposizioni inerenti ai movimenti sismici del 1971, del Novembre e Dicembre 1972, del Dicembre 1974 e del Gennaio 1975, in comuni della provincia di Perugia. Gazzetta Ufficiale della Repubblica Italiana n.120, 7/5/1976. [In Italian.] Rome: Consiglio dei Ministri.
Consiglio dei Ministri. 1978. Decreto Ministeriale 3/10/1978. Criteri generali per la verifica della sicurezza delle costruzioni e dei carichi e sovraccarichi. Gazzetta Ufficiale della Repubblica Italiana n.319, 15/11/1978. Rome: Consiglio dei Ministri.
Consiglio dei Ministri. 1996. Decreto Ministeriale 9/01/1996. Norme tecniche per il calcolo, l’ esecuzione e il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche. Supplemento ordinario alla Gazzetta Ufficiale della Repubblica Italiana n. 29, 05/02/1996. [In Italian.] Rome: Consiglio dei Ministri.
Consiglio dei Ministri. 1997. Circolare del Ministero dei Lavori Pubblici n. 836 65, 10/4/1997. Istruzioni per l’applicazione delle ‘Norme tecniche 837 per le costruzioni in zone sismiche’ di cui al Decreto Ministeriale 16 838 31 gennaio 1996. [In Italian.] Rome: Consiglio dei Ministri.
Consiglio dei Ministri. 2003. Ordinanza del Presidente del Consiglio dei Ministri (OPCM) 20 marzo 2003, n. 3274. Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica. Gazzetta Ufficiale della Repubblica Italiana n. 105, 8/5/2003. [In Italian.] Rome: Consiglio dei Ministri.
Consiglio dei Ministri. 2008. DM 14 gennaio 2008. Norme tecniche per le costruzioni. Gazzetta ufficiale n.29 del 4 febbraio 2008, Supplemento ordinario n.30. Minist delle Infrastrutture e dei Trasp Ist Poligr e Zecca dello stato. [In Italian.] Rome: Consiglio dei Ministri.
Cristofaro, M. T., M. De Stefano, R. Pucinotti, and M. Tanganelli. 2014. “Caratteristiche meccaniche del calcestruzzo in situ.” [In Italian.] In Proc., 15° Congresso AIPnD Biennale PnD-MD. Brescia, Italy: Associazione Italiana Prove non Distruttive Monitoraggio Diagnostica.
Crowley, H., et al. 2020. “Exposure model for European seismic risk assessment.” Supplement, Earthquake Spectra 36 (S1): 252–273. https://doi.org/10.1177/8755293020919429.
De Luca, F., G. E. D. Woods, C. Galasso, and D. D’Ayala. 2018. “RC infilled building performance against the evidence of the 2016 EEFIT Central Italy post-earthquake reconnaissance mission: Empirical fragilities and comparison with the FAST method.” Bull. Earthquake Eng. 16 (7): 2943–2969. https://doi.org/10.1007/s10518-017-0289-1.
Dolšek, M. 2009. “Incremental dynamic analysis with consideration of modeling uncertainties.” Earthquake Eng. Struct. Dyn. 38 (6): 805–825. https://doi.org/10.1002/eqe.869.
Franchin, P., L. Ragni, M. Rota, and A. Zona. 2018. “Modelling uncertainties of Italian code-conforming structures for the purpose of seismic response analysis.” J. Earthquake Eng. 22 (sup2): 1964–1989. https://doi.org/10.1080/13632469.2018.1527262.
Freeman, S. A. 2004. “Review of the development of the capacity spectrum method.” ISET J. Earthquake Technol. 41 (1): 1–13.
Galasso, C., G. Maddaloni, and E. Cosenza. 2014. “Uncertainly analysis of flexural overstrength for capacity design of RC Beams.” J. Struct. Eng. 140 (7): 04014037. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001024.
Gentile, R., C. Del Vecchio, S. Pampanin, D. Raffaele, and G. Uva. 2019a. “Refinement and validation of the simple lateral mechanism analysis (SLaMA) procedure for RC frames.” J. Earthquake Eng. 1–29. https://doi.org/10.1080/13632469.2018.1560377.
Gentile, R., S. Pampanin, D. Raffaele, and G. Uva. 2019b. “Analytical seismic assessment of RC dual wall/frame systems using SLaMA: Proposal and validation.” Eng. Struct. 188 (Jun): 493–505. https://doi.org/10.1016/j.engstruct.2019.03.029.
Gentile, R., S. Pampanin, D. Raffaele, and G. Uva. 2019c. “Non-linear analysis of RC masonry-infilled frames using the SLaMA method: Part 1—Mechanical interpretation of the infill/frame interaction and formulation of the procedure.” Bull. Earthquake Eng. 17 (6): 3283–3304. https://doi.org/10.1007/s10518-019-00580-w.
Gentile, R., S. Pampanin, D. Raffaele, and G. Uva. 2019d. “Non-linear analysis of RC masonry-infilled frames using the SLaMA method: Part 2—Parametric analysis and validation of the procedure.” Bull. Earthquake Eng. 17 (6): 3305–3326. https://doi.org/10.1007/s10518-019-00584-6.
Giardini, D., J. Wössner, and L. Danciu. 2014. “Mapping Europe’s seismic hazard.” EOS Trans. Am. Geophys. Union 95 (29): 261–262. https://doi.org/10.1002/2014EO290001.
Gokkaya, B. U., J. W. Baker, and G. G. Deierlein. 2016. “Quantifying the impacts of modeling uncertainties on the seismic drift demands and collapse risk of buildings with implications on seismic design checks.” Earthquake Eng. Struct. Dyn. 45 (10): 1661–1683. https://doi.org/10.1002/eqe.2740.
Iervolino, I., C. Galasso, and E. Cosenza. 2010. “REXEL: Computer aided record selection for code-based seismic structural analysis.” Bull. Earthquake Eng. 8: 339–362. https://doi.org/10.1007/s10518-009-9146-1.
Jalayer, F., and C. A. Cornell. 2009. “Alternative non-linear demand estimation methods for probability-based seismic assessments.” Earthquake Eng. Struct. Dyn. 38 (8): 951–972. https://doi.org/10.1002/eqe.876.
Jalayer, F., I. Iervolino, and G. Manfredi. 2010. “Structural modeling uncertainties and their influence on seismic assessment of existing RC structures.” Struct. Saf. 32 (May): 220–228. https://doi.org/10.1016/j.strusafe.2010.02.004.
King, D. J., M. J. N. Priestley, and R. Park. 1986. Computer programs for concrete column design.. Christchurch, New Zealand: Dept. of Civil Engineering, Univ. of Canterbury.
Kosič, M., M. Dolšek, and P. Fajfar. 2012. “Dispersions for the pushover-based risk assessment of reinforced concrete frames and cantilever walls Mirko.” Earthquake Eng. Struct. Dyn. 45 (13): 2163–2183. https://doi.org/10.1002/eqe.2753.
Kowalsky, M. J., and M. J. N. Priestley. 2000. “Improved analytical model for shear strength of circular reinforced concrete columns in seismic regions.” ACI Struct. J. 97 (3): 388–396.
Kwon, O. S., and A. Elnashai. 2006. “The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structures.” Eng. Struct. 28 (Jan): 289–303. https://doi.org/10.1016/j.engstruct.2005.07.010.
Liel, A. B., C. B. Haselton, G. G. Deierlein, and J. W. Baker. 2009. “Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings.” Struct. Saf. 31 (Mar): 197–211. https://doi.org/10.1016/j.strusafe.2008.06.002.
Lin, T., C. B. Haselton, and J. W. Baker. 2013. “Conditional spectrum-based ground motion selection. Part I: Hazard consistency for risk-based assessments.” Earthquake Eng. Struct. Dyn. 42 (12): 1847–1865. https://doi.org/10.1002/eqe.2301.
Magenes, G., and S. Pampanin. 2004. “Seismic response of gravity-load design frames with masonry infills.” In Proc., 13th World Conf. on Earthquake Engineering. Vancouver, British Columbia.
Mander, J. B., M. J. N. Priestley, and R. Park. 1988. “Theoretical stress strain model for confined concrete.” J. Struct. Eng. 114 (8): 1804–1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
Manfredi, G., A. Masi, R. Pinho, and G. M. Verderame. 2011. Valutazione degli edifici esistenti in Cemento Armato. Pavia, Italy: Istituto Universitario di Studi Superiori Press.
MOW (Ministry of Works). 1968. Code of practice, design of public buildings. MOW1968. Wellington, New Zealand: Ministry of Works.
NZSEE (New Zealand Society for Earthquake Engineering). 2017. The seismic assessment of existing buildings—Technical guidelines for engineering assessments. Wellington, New Zealand: NZSEE.
O’Reilly, G. J., and T. J. Sullivan. 2018. “Quantification of modelling uncertainty in existing Italian RC frames.” Earthquake Eng. Struct. Dyn. 47 (4): 1054–1074. https://doi.org/10.1002/eqe.3005.
Pampanin, S. 2017. “Towards the practical implementation of performance-based assessment and retrofit strategies for RC buildings: Challenges and solutions.” In Proc., SMAR2017—Fourth Conf. on Smart Monitoring, Assessment and Rehabilitation of Structures. Zurich.
Pampanin, S., G. Magenes, and A. Carr. 2003. “Modeling of shear hinge mechanism in poorly detailed R.C beam-column joints.” In Proc., Concrete Structures in Seismic Regions: fib 2003 Symp. Athens.
Priestley, M. J. N. 1997. “Displacement-based seismic assessment of reinforced concrete buildings.” J. Earthquake Eng. 1 (1): 157–192.
Priestley, M. J. N., G. M. Calvi, and M. J. Kowalsky. 2007. Direct displacement-based seismic design of structures. Pavia, Italy: IUSS Press.
Priestley, M. J. N., and R. Park. 1987. “Strength and ductility of concrete bridge columns under seismic loading.” ACI Struct. J. 84: 61–76.
Ricci, P., et al. 2018. “Modeling and seismic response analysis of Italian code-conforming reinforced concrete buildings.” J. Earthquake Eng. 22 (sup2): 105–139. https://doi.org/10.1080/13632469.2018.1527733.
Saiidi, M., and M. Sozen. 1979. Simple and complex models for nonlinear seismic response of reinforced concrete structures. Urbana, IL: Univ. of Illinois at Urbana-Champaign.
Santarella, L. 1977. Prontuario del cemento armato. [In Italian.] Milano: Hoepli.
Standards Association of New Zealand. 1976. Code of practice for general structural design and design loading for buildings. Wellington, New Zealand: Standards Association of New Zealand.
Tarbali, K., B. A. Bradley, and J. W. Baker. 2019. “Ground motion selection in the near-fault region considering directivity-induced pulse effects.” Earthquake Spectra 35 (2): 759–786. https://doi.org/10.1193/102517EQS223M.
Verderame, G. M., G. Manfredi, and G. Frunzio. 2001. “Le proprietà meccaniche dei calcestruzzi impiegati nelle strutture in c.a. realizzate negli anni ’60.” [In Italian.] In Proc., 10th Conf. on ‘Earthquake Engineering in Italy’. Rome: Associazione Nazionale Italiana Di Ingegneria Sismica.
Verderame, G. M., P. Ricci, M. Esposito, and F. C. Sansiviero. 2011. “Le caratteristiche meccaniche degli acciai impiegati nelle strutture in c.a. realizzate dal 1950 AL 1980.” [In Italian.] In Proc., Associazione Italiana Calcestruzzo Armato e Precompresso (AICAP). Rome: Associazione Italiana Calcestruzzo Armato e Precompresso.
Wight, J., and G. Parra-Montesinos. 2012. “Historical development of design recommendations for RC beam-to-column connections.” In Proc., ACI Spring 2012 Convention. Farmington Hills, MI: American Concrete Institute.
Yu, X., D. Lu, and B. Li. 2016. “Estimating uncertainty in limit state capacities for reinforced concrete frame structures through pushover analysis.” Earthquake Struct. 10 (1): 141–161. https://doi.org/10.12989/eas.2016.10.1.141.

Information & Authors

Information

Published In

Go to Journal of Structural Engineering
Journal of Structural Engineering
Volume 147Issue 4April 2021

History

Received: Mar 4, 2020
Accepted: Sep 17, 2020
Published online: Jan 18, 2021
Published in print: Apr 1, 2021
Discussion open until: Jun 18, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Marie Curie Senior Research Fellow, Dept. of Civil, Environmental, and Geomatic Engineering & Institute for Risk and Disaster Reduction, Univ. College London, Gower St., London WC1E 6BT, UK (corresponding author). ORCID: https://orcid.org/0000-0002-7682-4490. Email: [email protected]
Carmine Galasso, A.M.ASCE https://orcid.org/0000-0001-5445-4911
Associate Professor, Dept. of Civil, Environmental, and Geomatic Engineering, Univ. College London, Gower St., London WC1E 6BT, UK; Associate Professor, Istituto Universitario di Studi Superiori IUSS, Piazza della Vittoria 15, Pavia 27100, Italy. ORCID: https://orcid.org/0000-0001-5445-4911
Stefano Pampanin, M.ASCE
Full Professor, Dipartimento di Ingegneria Strutturale e Geotecnica, Università di Roma “La Sapienza”, Via Eudossiana 18, Rome 00184, Italy; Adjunct Professor, Dept. of Civil and Natural Resources Engineering, Univ. of Canterbury, Christchurch 8041, New Zealand.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share