Technical Papers
Mar 10, 2020

Review of Bridge Structural Health Monitoring Aided by Big Data and Artificial Intelligence: From Condition Assessment to Damage Detection

Publication: Journal of Structural Engineering
Volume 146, Issue 5

Abstract

Structural health monitoring (SHM) techniques have been widely used in long-span bridges. However, due to limitations of computational ability and data analysis methods, the knowledge in massive SHM data is not well interpreted. Big data (BD) and artificial intelligence (AI) techniques are seen as promising ways to address the data interpretation problem. This paper aims to clarify the scope of BD and AI techniques on what and how regarding bridge SHM. The BD and AI techniques are summarized, and the requirements of bridge SHM for new techniques are generalized. Applications of BD and AI techniques in bridge SHM are reviewed, respectively. BD techniques can be divided into two categories, namely computing techniques and data analysis methods. The computing techniques are employed in SHM to build a BD-oriented SHM framework and to address computing problems, while the data analysis methods are introduced under a pipeline of BD analysis, application scenarios of BD techniques in bridge SHM are proposed in each step of this pipeline. The state of the art of deep learning in SHM is introduced to represent AI applications, which are concerned with processing unstructured data for visual inspection and time series for structural damage detection. Finally, the upper limit, challenges, and future trends are discussed. As a review, the paper offers meaningful perspectives and suggestions for employing BD and AI techniques in the field of bridge SHM.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research is financially supported by the National Key R&D Program of China (2017YFC1500605) and the Science and Technology Commission of Shanghai Municipality (18DZ1201203).

References

Abdeljaber, O., O. Avci, M. S. Kiranyaz, B. Boashash, H. Sodano, and D. J. Inman. 2018. “1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data.” Neurocomputing 275 (Jan): 1308–1317. https://doi.org/10.1016/j.neucom.2017.09.069.
Abdeljaber, O., O. Avci, S. Kiranyaz, M. Gabbouj, and D. J. Inman. 2017. “Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks.” J. Sound Vibr. 388 (Feb): 154–170. https://doi.org/10.1016/j.jsv.2016.10.043.
Abu-Mostafa, Y. S., M. Magdon-Ismail, and H.-T. Lin. 2012. Learning from data. New York: AMLBook.
Aktan, A. E., D. N. Farhey, D. L. Brown, V. Dalal, A. J. Helmicki, V. J. Hunt, and S. J. Shelley. 1996. “Condition assessment for bridge management.” J. Infrastruct. Syst. 2 (3): 108–117. https://doi.org/10.1061/(ASCE)1076-0342(1996)2:3(108).
Alamdari, M. M., T. Rakotoarivelo, and N. L. D. Khoa. 2017. “A spectral-based clustering for structural health monitoring of the Sydney Harbour bridge.” Mech. Syst. Sig. Process. 87 (Part A): 384–400. https://doi.org/10.1016/j.ymssp.2016.10.033.
Alampalli, S., S. Alampalli, and M. Ettouney. 2016. “Big data and high-performance analytics in structural health monitoring for bridge management.” In Proc., SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, 980315–980317. Las Vegas: SPIE.
Amezquita-Sanchez, J. P., and H. Adeli. 2016. “Signal processing techniques for vibration-based health monitoring of smart structures.” Arch. Comput. Methods Eng. 23 (1): 1–15. https://doi.org/10.1007/s11831-014-9135-7.
Amiri, G. G., and E. Darvishan. 2015. “Damage detection of moment frames using ensemble empirical mode decomposition and clustering techniques.” KSCE J. Civ. Eng. 19 (5): 1302–1311. https://doi.org/10.1007/s12205-015-0415-z.
An, Y., E. Chatzi, S.-H. Sim, S. Laflamme, B. Blachowski, and J. Ou. 2019. “Recent progress and future trends on damage identification methods for bridge structures.” Struct. Control Health Monit. 26 (10): e2416. https://doi.org/10.1007/s12205-015-0415-z.
Arangio, S., and J. Beck. 2012. “Bayesian neural networks for bridge integrity assessment.” Struct. Control Health Monit. 19 (1): 3–21. https://doi.org/10.1002/stc.420.
Bai, S., J. Z. Kolter, and V. Koltun. 2018. Convolutional sequence modeling revisited. Vancouver, BC: International Conference on Learning Representations.
Bao, Y. Q., Z. Y. Tang, H. Li, and Y. F. Zhang. 2019. “Computer vision and deep learning–based data anomaly detection method for structural health monitoring.” Struct. Health Monit. 18 (2): 401–421. https://doi.org/10.1177/1475921718757405.
Bishop, C. M. 2006. Pattern recognition and machine learning. New York: Springer.
Brownjohn, J. M. W., A. de Stefano, Y. L. Xu, H. Wenzel, and A. E. Aktan. 2011. “Vibration-based monitoring of civil infrastructure: Challenges and successes.” J. Civ. Struct. Health Monit. 1 (3–4): 79–95. https://doi.org/10.1007/s13349-011-0009-5.
Cai, G. W., and S. Mahadevan. 2018. “Big data analytics in uncertainty quantification: Application to structural diagnosis and prognosis.” J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng. 4 (1): 04018003.
Carden, E. .P, and J. M. Brownjohn. 2008a. “ARMA modelled time-series classification for structural health monitoring of civil infrastructure.” Mech. Syst. Sig. Process. 22 (2): 295–314. https://doi.org/10.1016/j.ymssp.2007.07.003.
Carden, E. P., and J. M. Brownjohn. 2008b. “Fuzzy clustering of stability diagrams for vibration-based structural health monitoring.” Comput-Aided Civ. Infrastruct. Eng. 23 (5): 360–372. https://doi.org/10.1111/j.1467-8667.2008.00543.x.
Carden, E. P., and P. Fanning. 2004. “Vibration based condition monitoring: A review.” Struct. Health Monit. 3 (4): 355–377. https://doi.org/10.1177/1475921704047500.
Catbas, F. N., and A. E. Aktan. 2002. “Condition and damage assessment: Issues and some promising indices.” J. Struct. Eng. 128 (8): 1026–1036. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1026).
Catbas, F. N., D. L. Brown, and A. E. Aktan. 2006. “Use of modal flexibility for damage detection and condition assessment: Case studies and demonstrations on large structures.” J. Struct. Eng. 132 (11): 1699–1712. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:11(1699).
Cayton, L. 2005. “Algorithms for manifold learning.” Univ. California San Diego Tech. Rep. 12 (1–17): 1.
Cha, Y. J., W. Choi, and O. Büyüköztürk. 2017. “Deep learning-based crack damage detection using convolutional neural networks.” Comput-Aided Civ. Infrastruct. Eng. 32 (5): 361–378. https://doi.org/10.1111/mice.12263.
Cha, Y. J., W. Choi, G. Suh, S. Mahmoudkhani, and O. Büyüköztürk. 2018. “Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types.” Comput-Aided Civ. Infrastruct. Eng. 33 (9): 731–747. https://doi.org/10.1111/mice.12334.
Cha, Y. J., and Z. Wang. 2018. “Unsupervised novelty detection–based structural damage localization using a density peaks-based fast clustering algorithm.” Struct. Health Monit. 17 (2): 313–324. https://doi.org/10.1177/1475921717691260.
Chan, B., H. Guan, J. Jo, and M. Blumenstein. 2015. “Towards UAV-based bridge inspection systems: A review and an application perspective.” Struct. Monit. Maint. 2 (3): 283–300. https://doi.org/10.12989/smm.2015.2.3.283.
Chen, B., Z. W. Chen, Y. Z. Sun, and S. L. Zhao. 2013. “Condition assessment on thermal effects of a suspension bridge based on SHM oriented model and data.” Math. Prob. Eng. 2013 (11): 1–18.
Chen, B., S. L. Zhao, and P. Y. Li. 2014a. “Application of Hilbert-Huang transform in structural health monitoring: A state-of-the-art review.” Math. Prob. Eng. 2014 (7): 1–22. https://doi.org/10.1155/2014/317954.
Chen, F. C., and M. R. Jahanshahi. 2018. “NB-CNN: Deep learning-based crack detection using convolutional neural network and naïve bayes data fusion.” IEEE Trans. Ind. Electron. 65 (5): 4392–4400. https://doi.org/10.1109/TIE.2017.2764844.
Chen, M., S. Mao, and Y. Liu. 2014b. “Big data: A survey.” Mob. Netw. Appl. 19 (2): 171–209. https://doi.org/10.1007/s11036-013-0489-0.
Chen, Z., Y. Bao, H. Li, and B. F. Spencer. 2019. “LQD-RKHS-based distribution-to-distribution regression methodology for restoring the probability distributions of missing SHM data.” Mech. Syst. Sig. Process. 121 (Apr): 655–674. https://doi.org/10.1016/j.ymssp.2018.11.052.
Chen, Z. W., Q. L. Cai, Y. Lei, and S. Y. Zhu. 2014c. “Damage detection of long-span bridges using stress influence lines incorporated control charts.” Sci. China Technol. Sci. 57 (9): 1689–1697. https://doi.org/10.1007/s11431-014-5623-0.
Chu, C. T., S. K. Kim, Y. A. Lin, Y. Yu, G. Bradski, K. Olukotun, and A. Y. Ng. 2007. “Map-reduce for machine learning on multicore.” Adv. Neural Inf. Process. Syst. 19: 281–288.
Comanducci, G., F. Magalhães, F. Ubertini, and Á. Cunha. 2016. “On vibration-based damage detection by multivariate statistical techniques: Application to a long-span arch bridge.” Struct. Health Monit. 15 (5): 505–524. https://doi.org/10.1177/1475921716650630.
Cury, A., C. Cremona, and J. Dumoulin. 2012. “Long-term monitoring of a PSC box girder bridge: Operational modal analysis, data normalization and structural modification assessment.” Mech. Syst. Sig. Process. 33 (Nov): 13–37. https://doi.org/10.1016/j.ymssp.2012.07.005.
Cury, A., and C. Crémona. 2012. “Pattern recognition of structural behaviors based on learning algorithms and symbolic data concepts.” Struct. Control Health Monit. 19 (2): 161–186. https://doi.org/10.1002/stc.412.
Cury, A., C. Crémona, and E. Diday. 2010. “Application of symbolic data analysis for structural modification assessment.” Eng. Struct. 32 (3): 762–775. https://doi.org/10.1016/j.engstruct.2009.12.004.
Das, S., and P. J. M. Saha. 2018. “A review of some advanced sensors used for health diagnosis of civil engineering structures.” Measurement 129 (Dec): 68–90. https://doi.org/10.1016/j.measurement.2018.07.008.
Dervilis, N., K. Worden, and E. J. Cross. 2015. “On robust regression analysis as a means of exploring environmental and operational conditions for SHM data.” J. Sound Vibr. 347 (Jul): 279–296. https://doi.org/10.1016/j.jsv.2015.02.039.
Diez, A., N. L. D. Khoa, M. M. Alamdari, Y. Wang, F. Chen, and P. Runcie. 2016. “A clustering approach for structural health monitoring on bridges.” J. Civ. Struct. Health Monit. 6 (3): 429–445. https://doi.org/10.1007/s13349-016-0160-0.
Ding, Y. L., and A. Q. Li. 2011. “Temperature-induced variations of measured modal frequencies of steel box girder for a long-span suspension bridge.” Int. J. Steel Struct. 11 (2): 145–155. https://doi.org/10.1007/s13296-011-2004-4.
Ding, Y. L., G. X. Wang, Y. Hong, Y. S. Song, L. Y. Wu, and Q. Yue. 2017. “Detection and localization of degraded truss members in a steel arch bridge based on correlation between strain and temperature.” J. Perform. Constr. Facil. 31 (5): 04017082. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001075.
Doebling, S. W., C. R. Farrar, and M. B. Prime. 1998. “A summary review of vibration-based damage identification methods.” Shock Vib. Digest 30 (2): 91–105. https://doi.org/10.1177/058310249803000201.
Domingos, P. 2012. “A few useful things to know about machine learning.” Commun. ACM 55 (10): 78–87. https://doi.org/10.1145/2347736.2347755.
Dong, X. L., and D. Srivastava. 2013. “Big data integration.” In Proc., 2013 IEEE 29th Int. Conf. on Data Engineering (ICDE), 1245–1248. New York: IEEE.
Duan, Y. F., Y. Li, and Y. Q. Xiang. 2011. “Strain-temperature correlation analysis of a tied arch bridge using monitoring data.” In Proc., 2011 Int. Conf. on Multimedia Technology, ICMT 2011, 6025–6028. Hangzhou, China: International Conference on Multimedia Technology.
Esteban, C., S. L. Hyland, and G. Rätsch. 2017. “Real-valued (medical) time series generation with recurrent conditional GANs.” Preprint, submitted June 8, 2017. http://arxiv.org/abs/1706.02633.
Fallahian, M., F. Khoshnoudian, and V. Meruane. 2018. “Ensemble classification method for structural damage assessment under varying temperature.” Struct. Health Monit. 17 (4): 747–762. https://doi.org/10.1177/1475921717717311.
Fan, W., and A. Bifet. 2013. “Mining big data: Current status, and forecast to the future.” ACM sIGKDD Explorations Newsl. 14 (2): 1–5. https://doi.org/10.1145/2481244.2481246.
Fan, W., and P. Qiao. 2011. “Vibration-based damage identification methods: A review and comparative study.” Struct. Health Monit. 10 (1): 83–111. https://doi.org/10.1177/1475921710365419.
Farahani, R. V., and D. Penumadu. 2016. “Damage identification of a full-scale five-girder bridge using time-series analysis of vibration data.” Eng. Struct. 115 (May): 129–139. https://doi.org/10.1016/j.engstruct.2016.02.008.
Farrar, C. R., and K. Worden. 2007. “An introduction to structural health monitoring.” Philos. Trans. Royal Soc. London A: Mathe. Phys. Eng. Sci. 365 (1851): 303–315. https://doi.org/10.1098/rsta.2006.1928.
Farrar, C. R., and K. Worden. 2012. Structural health monitoring: A machine learning perspective. Chichester, UK: Wiley.
Figueiredo, E., and E. Cross. 2013. “Linear approaches to modeling nonlinearities in long-term monitoring of bridges.” J. Civ. Struct. Health Monit. 3 (3): 187–194. https://doi.org/10.1007/s13349-013-0038-3.
Figueiredo, E., G. Park, C. R. Farrar, K. Worden, and J. Figueiras. 2011. “Machine learning algorithms for damage detection under operational and environmental variability.” Struct. Health Monit. 10 (6): 559–572. https://doi.org/10.1177/1475921710388971.
García, S., S. Ramírez-Gallego, J. Luengo, J. M. Benítez, and F. J. B. D. A. Herrera. 2016. “Big data preprocessing: Methods and prospects.” Big Data Anal. 1 (1): 9. https://doi.org/10.1186/s41044-016-0014-0.
Goodfellow, S. D., A. Goodwin, R. Greer, P. C. Laussen, M. Mazwi, and D. Eytan. 2018. “Atrial fibrillation classification using step-by-step machine learning.” Biomed. Phys. Eng. Express 4 (4): 045005. https://doi.org/10.1088/2057-1976/aabef4.
Gres, S., M. D. Ulriksen, M. Döhler, R. J. Johansen, P. Andersen, L. Damkilde, and S. A. Nielsen. 2017. “Statistical methods for damage detection applied to civil structures.” Procedia Eng. 199: 1919–1924. https://doi.org/10.1016/j.proeng.2017.09.280.
Gulgec, N. S., M. Takáč, and S. N. Pakzad. 2017. “Structural damage detection using convolutional neural networks.” In Vol. 3 of Model validation and uncertainty quantification, 331–337. New York: Springer.
Guo, J. Q., X. B. Xie, R. F. Bie, and L. M. Sun. 2014. “Structural health monitoring by using a sparse coding-based deep learning algorithm with wireless sensor networks.” Pers. Ubiquitous Comput. 18 (8): 1977–1987. https://doi.org/10.1007/s00779-014-0800-5.
Guo, L., N. Li, F. Jia, Y. Lei, and J. Lin. 2017. “A recurrent neural network based health indicator for remaining useful life prediction of bearings.” Neurocomputing 240 (May): 98–109. https://doi.org/10.1016/j.neucom.2017.02.045.
Hakim, S., H. A. Razak, S. Ravanfar, and M. Mohammadhassani. 2014. “Structural damage detection using soft computing method.” In Vol. 5 of Structural health monitoring, 143–151. Cham, Switzerland: Springer.
Han, J. W., J. Pei, and M. Kamber. 2011. Data mining: Concepts and techniques. Waltham, MA: Elsevier.
Hester, D., and A. González. 2012. “A wavelet-based damage detection algorithm based on bridge acceleration response to a vehicle.” Mech. Syst. Sig. Process. 28 (Apr): 145–166. https://doi.org/10.1016/j.ymssp.2011.06.007.
Hinton, G. E. 2012. “A practical guide to training restricted Boltzmann machines.” In Neural networks: Tricks of the trade, 599–619. Berlin: Springer.
Hornik, K. 1991. “Approximation capabilities of multilayer feedforward networks.” Neural netw. 4 (2): 251–257. https://doi.org/10.1016/0893-6080(91)90009-T.
Hoskere, V., Y. Narazaki, T. Hoang, and B. Spencer, Jr. 2018. “Vision-based structural inspection using multiscale deep convolutional neural networks.” Preprint, submitted April 11, 2017. http://arxiv.org/abs/1805.01055.
Housner, G. W., L. A. Bergman, T. K. Caughey, A. G. Chassiakos, R. O. Claus, S. F. Masri, R. E. Skelton, T. Soong, B. Spencer, and J. T. Yao. 1997. “Structural control: Past, present, and future.” J. Eng. Mech. 123 (9): 897–971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897).
Hua, X. G., Y. Q. Ni, J. M. Ko, and K. Y. Wong. 2007. “Modeling of temperature-frequency correlation using combined principal component analysis and support vector regression technique.” J. Comput. Civ. Eng. 21 (2): 122–135. https://doi.org/10.1061/(ASCE)0887-3801(2007)21:2(122).
Huang, D., D. Hu, J. He, and Y. Xiong. 2018a. “Structure damage detection based on ensemble learning.” In Proc., 2018 9th Int. Conf. on Mechanical and Aerospace Engineering (ICMAE), 219–224. New York: IEEE.
Huang, H. B., T. H. Yi, and H. N. Li. 2016. “Canonical correlation analysis based fault diagnosis method for structural monitoring sensor networks.” Smart Struct. Syst 17 (6): 1031–1053. https://doi.org/10.12989/sss.2016.17.6.1031.
Huang, H. W., Q. T. Li, and D. M. Zhang. 2018b. “Deep learning based image recognition for crack and leakage defects of metro shield tunnel.” Tunnelling Underground Space Technol. 77 (Jul): 166–176. https://doi.org/10.1016/j.tust.2018.04.002.
James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An introduction to statistical learning. New York: Springer.
Jeong, S., Y. Zhang, R. Hou, J. P. Lynch, H. Sohn, and K. H. Law. 2016. “A cloud based information repository for bridge monitoring applications.” In SPIE smart structure materials+ nondestructive evaluation health monitoring, 980313. Las Vegas: SPIE.
Khan, S., and T. Yairi. 2018. “A review on the application of deep learning in system health management.” Mech. Syst. Sig. Process. 107 (Jul): 241–265. https://doi.org/10.1016/j.ymssp.2017.11.024.
Khan, S. M., S. Atamturktur, M. Chowdhury, and M. J. I. T. Rahman. 2016. “Integration of structural health monitoring and intelligent transportation systems for bridge condition assessment: Current status and future direction.” IEEE Trans. Intell. Transp. Syst. 17 (8): 2107–2122. https://doi.org/10.1109/TITS.2016.2520499.
Khazaeli, S., A. Ravandi, S. Banerji, and A. Bagchi. 2016. “The application of data mining and cloud computing techniques in data-driven models for structural health monitoring.” Proc., SPIE, 98052M. Las Vegas: SPIE.
Ko, J., and Y. Ni. 2005. “Technology developments in structural health monitoring of large-scale bridges.” Eng. Struct. 27 (12): 1715–1725. https://doi.org/10.1016/j.engstruct.2005.02.021.
Kullaa, J. 2011. “Distinguishing between sensor fault, structural damage, and environmental or operational effects in structural health monitoring.” Mech. Syst. Sig. Process. 25 (8): 2976–2989. https://doi.org/10.1016/j.ymssp.2011.05.017.
Kunwar, A., R. Jha, M. Whelan, and K. Janoyan. 2013. “Damage detection in an experimental bridge model using Hilbert–Huang transform of transient vibrations.” Struct. Control Health Monit. 20 (1): 1–15. https://doi.org/10.1002/stc.466.
Längkvist, M., L. Karlsson, and A. Loutfi. 2014. “A review of unsupervised feature learning and deep learning for time-series modeling.” Pattern Recognit. Lett. 42 (Jun): 11–24. https://doi.org/10.1016/j.patrec.2014.01.008.
Langone, R., E. Reynders, S. Mehrkanoon, and J. A. Suykens. 2017. “Automated structural health monitoring based on adaptive kernel spectral clustering.” Mech. Syst. Sig. Process. 90 (Jun): 64–78. https://doi.org/10.1016/j.ymssp.2016.12.002.
Laory, I., T. N. Trinh, D. Posenato, and I. F. Smith. 2013. “Combined model-free data-interpretation methodologies for damage detection during continuous monitoring of structures.” J. Comput. Civ. Eng. 27 (6): 657–666. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000289.
Laory, I., T. N. Trinh, I. F. Smith, and J. M. Brownjohn. 2014. “Methodologies for predicting natural frequency variation of a suspension bridge.” Eng. Struct. 80 (Dec): 211–221. https://doi.org/10.1016/j.engstruct.2014.09.001.
Lasko, T. A., J. C. Denny, and M. A. Levy. 2013. “Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data.” PLoS One 8 (6): e66341. https://doi.org/10.1371/journal.pone.0066341.
Lee, J., H. A. Kao, and S. Yang. 2014. “Service innovation and smart analytics for industry 4.0 and big data environment.” Procedia Cirp 16: 3–8. https://doi.org/10.1016/j.procir.2014.02.001.
Li, D., D. Chen, J. Goh, and S.-K. Ng. 2018a. “Anomaly detection with generative adversarial networks for multivariate time series.” Preprint, submitted September 13, 2018. http://arxiv.org/abs/1809.04758.
Li, H., S. L. Li, J. P. Ou, and H. W. Li. 2010. “Modal identification of bridges under varying environmental conditions: Temperature and wind effects.” Struct. Control Health Monit. 17 (5): 495–512. https://doi.org/10.1002/stc.319.
Li, S., S. Laima, and H. Li. 2017. “Cluster analysis of winds and wind-induced vibrations on a long-span bridge based on long-term field monitoring data.” Eng. Struct. 138 (May): 245–259. https://doi.org/10.1016/j.engstruct.2017.02.024.
Li, S. L., S. Y. Wei, Y. Q. Bao, and H. Li. 2018b. “Condition assessment of cables by pattern recognition of vehicle-induced cable tension ratio.” Eng. Struct. 155 (Jan): 1–15. https://doi.org/10.1016/j.engstruct.2017.09.063.
Li, S. W., S. J. Laima, and H. Li. 2018c. “Data-driven modeling of vortex-induced vibration of a long-span suspension bridge using decision tree learning and support vector regression.” J. Wind Eng. Ind. Aerodyn. 172 (Jan): 196–211. https://doi.org/10.1016/j.jweia.2017.10.022.
Li, Z., and R. Burgueño. 2010. “Using soft computing to analyze inspection results for bridge evaluation and management.” J. Bridge Eng. 15 (4): 430–438. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000072.
Li, Z., J. Guo, W. Liang, X. Xie, G. Zhang, and S. Wang. 2014. “Structural health monitoring based on realadaboost algorithm in wireless sensor networks.” In Proc., Int. Conf. on Wireless Algorithms, Systems, and Applications, 236–245. New York: Springer.
Liang, Y., D. L. Wu, G. R. Liu, Y. H. Li, C. L. Gao, Z. G. J. Ma, and W. D. Wu. 2016. “Big data-enabled multiscale serviceability analysis for aging bridges.” Digital Commun. Netw. 2 (3): 97–107. https://doi.org/10.1016/j.dcan.2016.05.002.
Lin, Y. Z., Z. H. Nie, and H. W. Ma. 2017. “Structural damage detection with automatic feature-extraction through deep learning.” Comput.-Aided Civ. Infrastruct. Eng. 32 (12): 1025–1046. https://doi.org/10.1111/mice.12313.
Lipton, Z. C., D. C. Kale, C. Elkan, and R. Wetzell. 2015. “Learning to diagnose with LSTM recurrent neural networks.” Preprint, submitted November 11, 2015. http://arxiv.org/abs/1511.03677.
Liu, C. C., Liu, J., and Liu, L. J. 2009. “Study on the damage identification of long-span cable-stayed bridge based on support vector machine.” In Proc., Int. Conf. on Information Engineering and Computer Science ICIECS 2009, 1–4. New York: IEEE.
Liu, W. J., B. Chen, and R. A. Swartz. 2013. “Investigation of time series representations and similarity measures for structural damage pattern recognition.” Sci. World J. 2013: 248349. https://doi.org/10.1155/2013/248349.
Lo, C., J. P. Lynch, and M. Liu. 2013. “Distributed reference-free fault detection method for autonomous wireless sensor networks.” IEEE Sens. J. 13 (5): 2009–2019. https://doi.org/10.1109/JSEN.2013.2244881.
Lu, W., Y. Li, Y. Cheng, D. Meng, B. Liang, and P. Zhou. 2018. “Early fault detection approach with deep architectures.” IEEE Trans. Instrum. Meas. 67 (7): 1679–1689. https://doi.org/10.1109/TIM.2018.2800978.
Luo, Q. 2008. “Advancing knowledge discovery and data mining.” In Proc., 1st Int. Workshop on Knowledge Discovery and Data Mining, 2008. WKDD 2008, 3–5. New York: IEEE.
Lv, F., C. Wen, M. Liu, and Z. Bao. 2017. “Weighted time series fault diagnosis based on a stacked sparse autoencoder.” J. Chemom. 31 (9): e2912. https://doi.org/10.1002/cem.2912.
Maaten, L., and G. Hinton. 2008. “Visualizing data using t-SNE.” J. Mach. Learn. Res. 9 (Nov): 2579–2605.
Manyika, J., M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers. 2011. Big data: The next frontier for innovation, competition, and productivity. Washington, DC: McKinsey Global Institute.
Mattson, S. G., and S. M. Pandit. 2006. “Statistical moments of autoregressive model residuals for damage localisation.” Mech. Syst. Sig. Process. 20 (3): 627–645. https://doi.org/10.1016/j.ymssp.2004.08.005.
Mayer-Schönberger, V., and K. Cukier. 2012. Big data: A revolution that transforms how we work, live, and think. Boston: Houghton Mifflin Harcourt.
Miao, S. F., A. Knobbe, E. Koenders, and C. Bosma. 2013. “Analysis of traffic effects on a Dutch highway bridge.” In Proc., IABSE Symposium Report, Int. Association for Bridge and Structural Engineering, 357–364.
Min, Z., and L. Sun. 2010. “Structural condition assessment based on canonical correlation analysis and outlier analysis.” Intell. Autom. Soft Comput. 16 (5): 665–675. https://doi.org/10.1080/10798587.2010.10643109.
Moser, P., and B. Moaveni. 2011. “Environmental effects on the identified natural frequencies of the Dowling Hall footbridge.” Mech. Syst. Sig. Process. 25 (7): 2336–2357. https://doi.org/10.1016/j.ymssp.2011.03.005.
Moughty, J. J., and J. R. Casas. 2017. “A state of the art review of modal-based damage detection in bridges: Development, challenges, and solutions.” Appl. Sci. 7 (5): 510. https://doi.org/10.3390/app7050510.
Mourtzis, D., E. Vlachou, and N. J. P. C. Milas. 2016. “Industrial big data as a result of IOT adoption in manufacturing.” Procedia Cirp. 55: 290–295. https://doi.org/10.1016/j.procir.2016.07.038.
Nagarajaiah, S., and B. Basu. 2009. “Output only modal identification and structural damage detection using time frequency and wavelet techniques.” Earthquake Eng. Eng. Vib. 8 (4): 583–605. https://doi.org/10.1007/s11803-009-9120-6.
Nagarajaiah, S., and K. Erazo. 2016. “Structural monitoring and identification of civil infrastructure in the United States.” Struct. Monit. Maint. 3 (1): 51–69. https://doi.org/10.12989/smm.2016.3.1.051.
Nagarajaiah, S., and Y. Yang. 2017. “Modeling and harnessing sparse and low-rank data structure: A new paradigm for structural dynamics, identification, damage detection, and health monitoring.” Struct. Control Health Monit. 24 (1): e1851. https://doi.org/10.1002/stc.1851.
Neves, A., I. González, J. Leander, and R. Karoumi. 2017. “Structural health monitoring of bridges: A model-free ANN-based approach to damage detection.” J. Civ. Struct. Health Monit. 7 (5): 689–702. https://doi.org/10.1007/s13349-017-0252-5.
Nguyen, T., T. H. Chan, and D. P. Thambiratnam. 2014. “Controlled Monte Carlo data generation for statistical damage identification employing Mahalanobis squared distance.” Struct. Health Monit. 13 (4): 461–472. https://doi.org/10.1177/1475921714521270.
Oh, C. K., H. Sohn, and I. H. Bae. 2009. “Statistical novelty detection within the Yeongjong suspension bridge under environmental and operational variations.” Smart Mater. Struct. 18 (12): 125022. https://doi.org/10.1088/0964-1726/18/12/125022.
Omar, T., and M. Nehdi. 2018. “Condition assessment of reinforced concrete bridges: Current practice and research challenges.” Infrastructure 3 (3): 36. https://doi.org/10.3390/infrastructures3030036.
Ostachowicz, W., R. Soman, and P. J. S. H. M. Malinowski. 2019. “Optimization of sensor placement for structural health monitoring: A review.” Struct. Health Monit. 18 (3): 963–988. https://doi.org/10.1177/1475921719825601.
Pan, H., M. Azimi, F. Yan, and Z. Lin. 2018a. “Time-frequency-based data-driven structural diagnosis and damage detection for cable-stayed bridges.” J. Bridge Eng. 23 (6): 04018033. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001199.
Pan, H., G. Q. Gui, Z. B. Lin, and C. H. Yan. 2018b. “Deep BBN learning for health assessment toward decision-making on structures under uncertainties.” KSCE J. Civ. Eng. 22 (3): 928–940. https://doi.org/10.1007/s12205-018-1301-2.
Park, J. H., J. T. Kim, D. S. Hong, D. D. Ho, and J. H. Yi. 2009. “Sequential damage detection approaches for beams using time-modal features and artificial neural networks.” J. Sound Vibr. 323 (1–2): 451–474. https://doi.org/10.1016/j.jsv.2008.12.023.
Park, J. W., K. C. Lee, S. H. Sim, H. J. Jung, and B. F. Spencer. 2016. “Traffic safety evaluation for railway bridges using expanded multisensor data fusion.” Comput.-Aided Civ. Infrastruct. Eng. 31 (10): 749–760. https://doi.org/10.1111/mice.12210.
Pathirage, C. S. N., J. Li, L. Li, H. Hao, W. Liu, and P. Ni. 2018. “Structural damage identification based on autoencoder neural networks and deep learning.” Eng. Struct. 172 (Oct): 13–28. https://doi.org/10.1016/j.engstruct.2018.05.109.
Patrizio, A. 2018. “Big data vs. artificial intelligence.” Accessed November 15, 2018. https://www.datamation.com/big-data/big-data-vs.-artificial-intelligence.html.
Pimentel, M. A., D. A. Clifton, L. Clifton, and L. Tarassenko. 2014. “A review of novelty detection.” Signal Process. 99: 215–249. https://doi.org/10.1016/j.sigpro.2013.12.026.
Rafiei, M. H., and H. Adeli. 2018. “A novel unsupervised deep learning model for global and local health condition assessment of structures.” Eng. Struct. 156 (Feb): 598–607. https://doi.org/10.1016/j.engstruct.2017.10.070.
Ranger, C., R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. 2007. “Evaluating mapreduce for multi-core and multiprocessor systems.” In Proc., IEEE 13th Int. Symposium on High Performance Computer Architecture, 2007. HPCA 2007, 13–24. New York: IEEE.
Roveri, N., and A. Carcaterra. 2012. “Damage detection in structures under traveling loads by Hilbert–Huang transform.” Mech. Syst. Sig. Process. 28 (Apr): 128–144. https://doi.org/10.1016/j.ymssp.2011.06.018.
Russell, S. J., and P. Norvig. 2016. Artificial intelligence: A modern approach. Harlow, UK: Pearson Education Limited.
Saitta, S., P. Kripakaran, B. Raphael, and I. F. Smith. 2008. “Improving system identification using clustering.” J. Comput. Civ. Eng. 22 (5): 292–302. https://doi.org/10.1061/(ASCE)0887-3801(2008)22:5(292).
Sammut, C., and G. I. Webb. 2017. Encyclopedia of machine learning and data mining. New York: Springer.
Santos, J. P., C. Crémona, L. Calado, P. Silveira, and A. D. Orcesi. 2016. “On-line unsupervised detection of early damage.” Struct. Control Health Monit. 23 (7): 1047–1069. https://doi.org/10.1002/stc.1825.
Santos, J. P., C. Crémona, A. D. Orcesi, and P. Silveira. 2013. “Multivariate statistical analysis for early damage detection.” Eng. Struct. 56 (Nov): 273–285. https://doi.org/10.1016/j.engstruct.2013.05.022.
Satpal, S. B., A. Guha, and S. Banerjee. 2016. “Damage identification in aluminum beams using support vector machine: Numerical and experimental studies.” Struct. Control Health Monit. 23 (3): 446–457. https://doi.org/10.1002/stc.1773.
Serker, N. H. M. K., and Z. Wu. 2009. “Temperature sensitivity assessment of vibration-based damage identification techniques.” Struct. Durability Health Monit. 5 (2): 87–107.
Serker, N. H. M. K., Z. Wu, and S. Li. 2010. “A nonphysics-based approach for vibration-based structural health monitoring under changing environmental conditions.” Struct. Health Monit. 9 (2): 145–158. https://doi.org/10.1177/1475921709352149.
Shahidi, S. G., M. B. Nigro, S. N. Pakzad, and Y. Pan. 2015. “Structural damage detection and localisation using multivariate regression models and two-sample control statistics.” Struct. Infrastruct. Eng. 11 (10): 1277–1293. https://doi.org/10.1080/15732479.2014.949277.
Shahsavari, V., L. Chouinard, and J. Bastien. 2017. “Wavelet-based analysis of mode shapes for statistical detection and localization of damage in beams using likelihood ratio test.” Eng. Struct. 132 (Feb): 494–507. https://doi.org/10.1016/j.engstruct.2016.11.056.
Shang, Z. Q., L. M. Sun, and Y. Zhou. 2017. “A big data application in SHM: PCP-based pattern recognition.” In Proc., 15th East Asia-Pacific Conf. on Structural Engineering and Construction (EASEC-15), 1587–1593. Shanghai, China: Tongji Univ.
Shu, J. P., Z. Y. Zhang, I. Gonzalez, and R. Karoumi. 2013. “The application of a damage detection method using artificial neural network and train-induced vibrations on a simplified railway bridge model.” Eng. Struct. 52 (Jul): 408–421. https://doi.org/10.1016/j.engstruct.2013.02.031.
Silva, M., A. Santos, E. Figueiredo, R. Santos, C. Sales, and J. C. W. A. Costa. 2016. “A novel unsupervised approach based on a genetic algorithm for structural damage detection in bridges.” Eng. Appl. Artif. Intell. 52 (Jun): 168–180. https://doi.org/10.1016/j.engappai.2016.03.002.
Słoński, M. 2017. “Gaussian mixture model for time series-based structural damage detection.” Comput. Assisted Methods Eng. Sci. 19 (4): 331–338.
Smarsly, K., Dragos, K., and Wiggenbrock, J. 2016. “Machine learning techniques for structural health monitoring.” In Proc., 8th European Workshop on Structural Health Monitoring (EWSHM 2016), 5–8. Bilbao, Spain: Universidad Politécnica de Madrid.
Sohn, H., and C. R. Farrar. 2001. “Damage diagnosis using time series analysis of vibration signals.” Smart Mater. Struct. 10 (3): 446. https://doi.org/10.1088/0964-1726/10/3/304.
Staszewski, W. J., and A. N. Robertson. 2007. “Time-frequency and time-scale analyses for structural health monitoring.” Philos. Trans. Royal Soc. London A: Math. Phys. Eng. Sci. 365 (1851): 449–477. https://doi.org/10.1098/rsta.2006.1936.
Suarez, E., A. Benavent-Climent, R. Molina-Conde, and A. Gallego. 2018. “Wavelet energy ratio index for health monitoring of hysteretic dampers.” Struct. Control Health Monit. 25 (2): e2071. https://doi.org/10.1002/stc.2071.
Sun, S., L. Liang, M. Li, and X. Li. 2018. “Multidamage detection of bridges using rough set theory and naive-Bayes classifier.” Math. Prob. Eng. 2018: 13. https://doi.org/10.1155/2018/6752456.
Sun, S. W., L. M. Sun, and L. Chen. 2016. “Damage detection based on structural responses induced by traffic load: Methodology and application.” Int. J. Struct. Stab. Dyn. 16 (04): 1640026. https://doi.org/10.1142/S0219455416400265.
Taha, M. R., A. Noureldin, J. Lucero, and T. Baca. 2006. “Wavelet transform for structural health monitoring: A compendium of uses and features.” Struct. Health Monit. 5 (3): 267–295. https://doi.org/10.1177/1475921706067741.
Tan, P. N. 2007. Introduction to data mining. Harlow, UK: Pearson Education India.
Tibaduiza, D., L. Mujica, and J. Rodellar. 2013. “Damage classification in structural health monitoring using principal component analysis and self-organizing maps.” Struct. Control Health Monit. 20 (10): 1303–1316. https://doi.org/10.1002/stc.1540.
Vespier, U., A. Knobbe, J. Vanschoren, S. Miao, A. Koopman, B. Obladen, and C. Bosma. 2011. “Traffic events modeling for structural health monitoring.” In Proc., Int. Symposium on Intelligent Data Analysis, 376–387. Berlin: Springer.
Vitola, J., F. Pozo, D. A. Tibaduiza, and M. Anaya. 2017. “A sensor data fusion system based on k-nearest neighbor pattern classification for structural health monitoring applications.” Sensors 17 (2): 417. https://doi.org/10.3390/s17020417.
Wang, L., and T. H. Chan. 2018. “Review of vibration-based damage detection and condition assessment of bridge structures using structural health monitoring.” In Proc., QUT Conf. Brisbane, Australia: Queensland Univ. of Technology.
Wang, L., G. Wang, and C. A. Alexander. 2015. “Big data and visualization: Methods, challenges and technology progress.” Digital Technol. 1 (1): 33–38.
Wang, Z., and Y. J. Cha. 2018. “Automated damage-sensitive feature extraction using unsupervised convolutional neural networks.” In Proc., SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, SPIE, 7. Denver: SPIE.
Ward, J. S., and A. Barker. 2013. “Undefined by data: A survey of big data definitions.” Preprint, submitted September 20, 2013. http://arxiv.org/abs/1309.5821.
Weiss, K., T. M. Khoshgoftaar, and D. Wang. 2016. “A survey of transfer learning.” J. Big Data 3 (1): 9. https://doi.org/10.1186/s40537-016-0043-6.
Wen, X. L., W. Lei, D. H. Dan, and G. Liu. 2017. “Study on a measurement index of transverse collaborative working performance of prefabricated girder bridges.” Adv. Struct. Eng. 20 (12): 1879–1890. https://doi.org/10.1177/1369433217700422.
Wolpert, D. H. 2002. “The supervised learning no-free-lunch theorems.” In Soft computing and industry, 25–42. Berlin: Springer.
Worden, K., T. Baldacchino,.J. Rowson, and E. J. Cross. 2016. “Some recent developments in SHM based on nonstationary time series analysis.” Proc. IEEE 104 (8): 1589–1603. https://doi.org/10.1109/JPROC.2016.2573596.
Worden, K., and G. Manson. 2006. “The application of machine learning to structural health monitoring.” Philos. Trans. Royal Soc. London A: Math. Phys. Eng. Sci. 365 (1851): 515–537. https://doi.org/10.1098/rsta.2006.1938.
Xia, Y., H. Hao, G. Zanardo, and A. Deeks. 2006. “Long term vibration monitoring of an RC slab: Temperature and humidity effect.” Eng. Struct. 28 (3): 441–452. https://doi.org/10.1016/j.engstruct.2005.09.001.
Xia, Y., P. Wang, and L. M. Sun. 2019. “Neutral axis based health monitoring and condition assessment techniques for concrete box girder bridges.” Int. J. Struct. Stab. Dyn. 19 (01): 1940015. https://doi.org/10.1142/S0219455419400157.
Xu, Y., Y. Bao, J. Chen, W. Zuo, and H. Li. 2018. “Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images.” Struct. Health Monit. 18 (3): 653–674. https://doi.org/10.1177/1475921718764873.
Xu, Y., J. M. W. Brownjohn, D. Hester, and K. Y. Koo. 2017. “Long-span bridges: Enhanced data fusion of GPS displacement and deck accelerations.” Eng. Struct. 147 (Sep): 639–651. https://doi.org/10.1016/j.engstruct.2017.06.018.
Yang, X., H. Li, Y. Yu, X. Luo, T. Huang, and X. Yang. 2018. “Automatic pixel-level crack detection and measurement using fully convolutional network.” Comput.-Aided Civ. Infrastruct. Eng. 33 (12): 1090–1109. https://doi.org/10.1111/mice.12412.
Yang, Y., and S. Nagarajaiah. 2014. “Blind denoising of structural vibration responses with outliers via principal component pursuit.” Struct. Control Health Monit. 21 (6): 962–978. https://doi.org/10.1002/stc.1624.
Yang, Y., and S. Nagarajaiah. 2016. “Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure.” Mech. Syst. Sig. Process. 74 (Jun): 165–182. https://doi.org/10.1016/j.ymssp.2015.11.009.
Yao, Z. J., J. Bi, and Y. X. Chen. 2018. “Applying deep learning to individual and community health monitoring data: A survey.” Int. J. Autom. Comput. 15 (6): 1–13.
Yi, T. H., H. N. Li, G. Song, and Q. Guo. 2016. “Detection of shifts in GPS measurements for a long-span bridge using CUSUM chart.” Int. J. Struct. Stab. Dyn. 16 (4): 1640024. https://doi.org/10.1142/S0219455416400241.
Ying, Y., J. H. Garrett Jr, I. J. Oppenheim, L. Soibelman, J. B. Harley, J. Shi, and Y. Jin. 2013. “Toward data-driven structural health monitoring: Application of machine learning and signal processing to damage detection.” J. Comput. Civ. Eng. 27 (6): 667–680. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000258.
Yu, L., and J. C. Lin. 2015. “Cloud computing-based time series analysis for structural damage detection.” J. Eng. Mech. 143 (1): C4015002. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000982.
Yu, L., J. H. Zhu, and L. l. Yu. 2013. “Structural damage detection in a truss bridge model using fuzzy clustering and measured FRF data reduced by principal component projection.” Adv. Struct. Eng. 16 (1): 207–217. https://doi.org/10.1260/1369-4332.16.1.207.
Zhang, L. Y., L. M. Sun, and Z. Q. Shang. 2016. “Real-time reliability assessment based on acceleration monitoring for bridge.” Sci. China Technol. Sci. 59 (8): 1294–1304. https://doi.org/10.1007/s11431-016-6059-5.
Zhang, Z., and Y. J. M. S. Luo. 2017. “Restoring method for missing data of spatial structural stress monitoring based on correlation.” Mech. Sys. Signal Process. 91 (Jul): 266–277. https://doi.org/10.1016/j.ymssp.2017.01.018.
Zhao, H. W., Y. L. Ding, S. Nagarajaiah, and A. Q. Li. 2019. “Behavior analysis and early warning of girder deflections of a steel-truss arch railway bridge under the effects of temperature and trains: Case study.” J. Bridge Eng. 24 (1): 05018013. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001327.
Zheng, S., K. Ristovski, A. Farahat, and C. Gupta. 2017. “Long short-term memory network for remaining useful life estimation.” In Proc., 2017 IEEE Int. Conf. on Prognostics and Health Management (ICPHM), 88–95. New York: IEEE.
Zhou, G. D., and T. H. Yi. 2014. “A summary review of correlations between temperatures and vibration properties of long-span bridges.” Math. Prob. Eng. 2014: 19. https://doi.org/10.1155/2014/638209.
Zhou, X., Y. Ni, and F. Zhang. 2014. “Damage localization of cable-supported bridges using modal frequency data and probabilistic neural network.” Math. Prob. Eng. 2014: 10. https://doi.org/10.1155/2014/837963.
Zhou, Y., and L. Sun. 2018. “Effects of high winds on a long-span sea-crossing bridge based on structural health monitoring.” J. Wind Eng. Ind. Aerodyn. 174 (Mar): 260–268. https://doi.org/10.1016/j.jweia.2018.01.001.
Zhou, Y., L. M. Sun, and Z. J. Peng. 2015. “Mechanisms of thermally induced deflection of a long-span cable-stayed bridge.” Smart Struct. Syst. 15 (3): 505–522. https://doi.org/10.12989/sss.2015.15.3.505.
Zhou, Y. L., N. M. Maia, R. P. Sampaio, and M. A. Wahab. 2017. “Structural damage detection using transmissibility together with hierarchical clustering analysis and similarity measure.” Struct. Health Monit. 16 (6): 711–731. https://doi.org/10.1177/1475921716680849.
Zolghadri, N., M. W. Halling, and P. J. Barr. 2016. “Effects of temperature variations on structural vibration properties.” In Proc., Geotechnical and Structural Engineering Congress 2016, 1032–1043. Phoenix: Geo-Institute and the Structural Engineering Institute of ASCE.

Information & Authors

Information

Published In

Go to Journal of Structural Engineering
Journal of Structural Engineering
Volume 146Issue 5May 2020

History

Received: Dec 18, 2018
Accepted: Jul 18, 2019
Published online: Mar 10, 2020
Published in print: May 1, 2020
Discussion open until: Aug 10, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Limin Sun, A.M.ASCE [email protected]
P.E.
Professor, State Key Lab for Disaster Reduction in Civil Engineering, Dept. of Bridge Engineering, College of Civil Engineering, Tongji Univ., Shanghai 200092, China. Email: [email protected]
Zhiqiang Shang [email protected]
Ph.D. Candidate, Dept. of Bridge Engineering, College of Civil Engineering, Tongji Univ., Shanghai 200092, China. Email: [email protected]
Associate Professor, Dept. of Bridge Engineering, College of Civil Engineering, Tongji Univ., Shanghai 200092, China. Email: [email protected]
Sutanu Bhowmick [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Rice Univ., Houston, TX 77005. Email: [email protected]
Professor, Dept. of Civil and Environmental Engineering, Rice Univ., Houston, TX 77005 (corresponding author). ORCID: https://orcid.org/0000-0003-0088-1656. Email: [email protected]; [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share