Technical Papers
Mar 10, 2017

Fire Safety of Glued-Laminated Timber Beams in Bending

Publication: Journal of Structural Engineering
Volume 143, Issue 7

Abstract

Design models for timber structures with fire-resistance requirements usually take into account the loss in cross section due to charring and the temperature-dependent reduction in strength and stiffness of the residual cross section. Standards for glued timber elements like glued-laminated timber beams have assumed that structural adhesives do not influence the fire resistance, but further specifications of adequate adhesive requirements are missing. Investigations were therefore conducted to determine the influence of different adhesives on the load-carrying behavior of glued-laminated timber beams in fire. Large-scale fire-resistance tests in combination with extensive finite-element analyses showed that a modification of the zero-strength layer thickness of d0=7  mm currently used in a standard design code should be discussed for glued-laminated timber loaded in bending in a future release of this design code. An increase of the zero-strength layer d0 considering the finger-joint strength depending on the approved structural adhesive is not needed.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors gratefully acknowledge the financial support by the Swiss Commission for Technology and Innovation (CTI) and all industrial and academic partners involved in this project.

References

Abaqus version 6.10 [Computer software]. Dassault Systèmes, VélizyVillacoublay, France.
ASTM. (2007). “Standard test method for evaluating the shear strength of adhesive bonds in laminated wood products at elevated temperatures.” ASTM D7247-07ae1, West Conshohocken, PA.
ASTM. (2012). “Standard test methods for fire tests of building construction and materials.” ASTM E119, West Conshohocken, PA.
Bender, D., Woeste, F., and Schafler, E. (1985). “Reliability formulation for the strength and fire endurance of glued-laminated beams.” U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI.
CEN (European Committee for Standardization). (2004). “Eurocode 5—Design of timber structures. Part 1-2: General—Structural fire design.”, Brussels, Belgium.
CEN (European Committee for Standardization). (2008). “Adhesives—One component polyurethane for load bearing timber structures—Classification and performance requirements.”, Brussels, Belgium.
CEN (European Committee for Standardization). (2010). “Timber structures—Structural timber and glued laminated timber—Determination of some physical and mechanical properties.”, Brussels, Belgium.
CEN (European Committee for Standardization). (2013a). “Adhesives for load-bearing timber structures—Test methods—Part 1: Determination of bond strength in longitudinal tensile shear strength.”, Brussels, Belgium.
CEN (European Committee for Standardization). (2013b). “Adhesives, phenolic and aminoplastic, for load-bearing timber structures—Classification and performance requirements.”, Brussels, Belgium.
CEN (European Committee for Standardization). (2013c). “Adhesives—Emulsion polymerized isocyanate (EPI) for load-bearing timber structures—Classification and performance requirements.”, Brussels, Belgium.
Clauss, S., Joscak, M., and Niemz, P. (2011). “Thermal stability of glued wood joints measured by shear tests.” Eur. J. Wood Wood Prod., 69(1), 101–111.
Colling, F. (1990). “Biegefestigkeit von Brettschichtholzträgern in Abhängigkeit von den festigkeitsrelevanten Einflussgrössen.” Eur. J. Wood Wood Prod., 48(10), 391–395 (in German).
CSA (Canadian Standards Association). (2008). “Evaluation of adhesives for structural wood products (limited moisture exposure).”, Toronto.
CSA (Canadian Standards Association). (2010). “Evaluation of adhesives for structural wood products (exterior exposure).”, Toronto.
DIN (Deutsches Institut für Normung e.V). (1940). “Brandverhalten von Bauteilen (fire behavior of building materials and building components).”, Berlin (in German).
Dorn, H., and Egner, K. (1961). “Brandversuche mit geleimten Holzbauteilen.” Holz-Zentralblatt Stuttgart, 87(28), 435–438 (in German).
Dorn, H., and Egner, K. (1967). “Brandversuche an Brettschichtverleimten Holzträger unter Biegebeanspruchung.” Eur. J. Wood Wood Prod., 25(8), 308–320 (in German).
Dreyer, R. (1969). “Brandverhalten von Holzträgern unter Biege- und Feuerbeanspruchung.” Bauen mit Holz, 71(5), 225–227 (in German).
Dreyer, R. (1970a). “Brettschichtverleimte Binder unter Biege- und Feuerbeanspruchung.”, Institut für Baustoffkunde und Stahlbetonbau der Technischen Universität Braunschweig, Braunschweig, Germany (in German).
Dreyer, R. (1970b). “Träger, Binder und Decken aus Holz unter Biege- und Feuerbeanspruchung.”, Institut für Baustoffkunde und Stahlbetonbau der Technischen Universität Braunschweig, Braunschweig, Germany (in German).
Ehlbeck, J., Colling, F., and Görlacher, R. (1985). “Einfluß keilgezinkter Lamellen auf die Biegefestigkeit von Brettschichtholzträgern.” Eur. J. Wood Wood Prod., 43(9), 369–373 (in German).
Ehlbeck, J., and Heimeshoff, B. (1987). “Biegefestigkeit von Brettschichtholz in Abhängigkeit von Rohdichte, Elastizitätsmodul, Ästigkeit und Keilzinkung der Lamellen, der Lage der Keilzinkung sowie von der Trägerhöhe: Teil A.Karlsruher Untersuchungen, Teil B: Münchner Untersuchungen.” Fraunhofer IRB, Stuttgart (in German).
Fink, G. (2014). “Influence of varying material properties on the load-bearing capacity of glued laminated timber.” Ph.D. thesis, ETH Zürich, Zurich, Switzerland.
Fink, G., Frangi, A., and Kohler, J. (2015a). “Bending tests on GLT beams having well-known local material properties.” Mater. Struct., 48(11), 3571–3584.
Fink, G., Frangi, A., and Kohler, J. (2015b). “Probabilistic approach for modelling the load-bearing capacity of glued laminated timber.” Eng. Struct., 100, 751–762.
Fink, G., Klippel, M., and Frangi, A. (2015c). “Extension of data sets for a more reliable prediction of the fire resistance of finger joint connections.” 12th Int. Conf. on Applications of Statistics and Probability in Civil Engineering, International Civil Engineering Risk and Reliability Association (CERRA), Berkeley, CA.
Fink, G., and Kohler, J. (2015). “Probabilistic modelling of the tensile related material properties of timber boards and finger joint connections.” Eur. J. Wood Wood Prod., 73(3), 335–346.
Fink, G., Köhler, J., and Frangi, A. (2013). “Bending tests on glued laminated timber beams with well-known material properties: Test report.”, ETH Zürich, Zürich, Switzerland.
Foschi, R. O., and Barrett, D. J. (1980). “Glued-laminated beam strength: A model.” J. Struct. Div., 106(8), 1735–1754.
Fragiacomo, M., Menis, A., Clemente, I., Bochicchio, G., and Ceccotti, A. (2013). “Fire resistance of cross-laminated timber panels loaded out of plane.” J. Struct. Eng, .
Frangi, A. (2001). “Brandverhalten von Holz-Beton-Verbunddecken.” Ph.D. thesis, ETH Zürich, Zurich, Switzerland (in German).
Frangi, A., Bertocchi, M., Clauß, S., and Niemz, P. (2012). “Mechanical behaviour of finger joints at elevated temperatures.” Wood Sci. Technol., 46(5), 793–812.
Govindarajoo, R. (1989). “Simulation modeling and analyses of straight horizontally-laminated timber beams.” Ph.D. thesis, Civil Engineering Dept., Purdue Univ., West Lafayette, IN.
Hall, G. (1968). “Fire resistance tests of laminated timber beams.” Timber Research and Development Association, High Wycombe, U.K.
Harada, T., Miyatake, A., Kamikawa, D., Hiramatsu, Y., Inoue, A., and Hatano, Y. (2012). “Fire resistance of glued laminated timber bonded with RF, API, OR, PVAc Resin.” Proc., 12th World Conf. on Timber Engineering, Curran, Red Hook, NY.
Hernandez, R., Bender, D., Richburg, B., and Kline, K. (1992). “Probabilistic modeling of glued-laminated timber beams.” Wood Fiber Sci., 24(3), 294–300.
ISO. (1999). “Fire-resistance tests—Elements of building construction—Part 1: General requirements.”, Geneva.
JCSS (Joint Committee on Structural Safety). (2007). “Probabilistic model code.” ⟨http://www.jcss.byg.dtu.dk/publications/probabilistic_model_code⟩ (Jul. 1, 2015).
Klippel, M. (2014). “Fire safety of bonded structural timber elements.” Ph.D. thesis, ETH Zürich, Zurich, Switzerland.
Klippel, M., Clauss, S., and Frangi, A. (2014). “Experimental analysis on small-scale finger-jointed specimens at elevated temperatures.” Eur. J. Wood Wood Prod., 72(4), 535–545.
Klippel, M., and Frangi, A. (2014). “Fire tests on finger-jointed timber boards.” Institute of Structural Engineering (IBK), ETH Zürich, Zurich, Switzerland.
Klippel, M., Frangi, A., and Hugi, E. (2014). “Experimental analysis of the fire behavior of finger-jointed timber members.” J. Struct. Eng., .
Klippel, M., Schmid, J., and Frangi, A. (2012). “The reduced cross section method for timber members subjected to compression, tension and bending in fire.” Int. Council for Research and Innovation in Building and Construction, Working Commission W18—Timber Structures, Meeting 45; CIB-W18 Meeting 2012, Ingenieurholzbau und Baukonstruktionen, Karlsruhe Institute of Technology, Germany.
König, J. (2005). “Structural fire design according to Eurocode 5—Design rules and their background.” Fire Mater., 29(3), 147–163.
König, J., Norén, J., and Sterley, M. (2008). “Effect of adhesives on finger joint performance in fire.” Proc., 41th CIB-W18 Meeting, Ingenieurholzbau und Baukonstruktionen, Karlsruhe Institute of Technology, Germany.
König, J., and Walleij, L. (1999). “One-dimensional charring of timber exposed to standard and parametric fires in initially unprotected and postprotection situations.”, SP Technical Research Institute of Sweden, Wood Technology, Stockholm, Sweden.
Lange, D., Boström, L., Schmid, J., and Albrektsson, J. (2014). “Assessment of the impact of different fire scenarios on structural timber performance and reliability—Part 1: Fire tests.”, SP Swedish Technical Research Institute, Borås, Sweden.
Larsen, H. J. (1980). “Strength of finger joints.” Proc., 13th CIB-W18 Meeting, Ingenieurholzbau und Baukonstruktionen, Karlsruhe Institute of Technology, Germany.
Lie, T. T. (1977). “A method for assessing the fire resistance of laminated timber beams and columns.” Can. J. Civ. Eng., 4(2), 161–169.
Malhotra, H., and Rogowski, B. (1967). “Fire resistance of laminated timber columns.”, Fire Research Station, BRE Trust, U.K.
MATLAB [Computer software]. MathWorks, Natick, MA.
Mihashi, H., and Itagaki, N. (1998). “Probabilistic design of performance in glued laminated timber.” NATO ASI Series, Vol. 46, Springer, Netherlands, 333–345.
NTI (Norsk Treteknisk Institutt). (2009). “Test procedure for approval of new adhesives for exposure condition A, B and C in the JAS system - Face gluing of lamellae in conifer wood.” Oslo, Norway.
Peter, M., and Göckerl, T. (2006). “Bemessung von Voll- und Brettschichtholzbauteilen aus maschinell sortiertem Schnittholz für den Brandfall—Teil 2: Brandversuche zur Bestätigung der theoretischen Ergebnisse.”, Institut des Zimmerer- und Holzbaugewerbes e.V., Berlin (in German).
Schaffer, E. L., Marx, C. M., Bender, D. A., and Woeste, F. E. (1986). “Strength validation and fire endurance of glued-laminated beams.”, Forest Products Laboratory, Madison, WI.
Schmid, J., Klippel, M., Just, A., and Frangi, A. (2014). “Review and analysis of fire resistance tests of timber members in bending, tension and compression with respect to the reduced cross section method.” Fire Saf. J., 68(0), 81–99.
Serrano, E., Gustafsson, J., and Larsen, H. (2001). “Modeling of finger-joint failure in glued-laminated timber beams.” J. Struct. Eng., 914–921.
Tenning, K. (1961). “Glued laminated beams: Fire tests and experience in practice.”, Brandskydd, AB Fribärande Träkonstrukioner, Töreboda, Sweden.
White, R. (1967). “Tensile strength of fire-exposed wood members.” Int. Wood Engineering Conf., New Orleans.
White, R. H. (1995). “Analytical methods for determining fire resistance of timber members.” The SFPE handbook of fire protection engineering, 2nd Ed., National Fire Protection, Quincy, MA.
Zhang, J., Xu, Q. F., Xu, Y. X., Wang, B., and Shang, J. X. (2012). “A numerical study on fire endurance of wood beams exposed to three-side fire.” J. Zhejiang Univ., Sci. A., 13(7), 491–505.

Information & Authors

Information

Published In

Go to Journal of Structural Engineering
Journal of Structural Engineering
Volume 143Issue 7July 2017

History

Received: Dec 10, 2015
Accepted: Dec 20, 2016
Published online: Mar 10, 2017
Published in print: Jul 1, 2017
Discussion open until: Aug 10, 2017

Permissions

Request permissions for this article.

Authors

Affiliations

Michael Klippel [email protected]
Senior Scientist, ETH Zurich, Institute of Structural Engineering, Stefano-Franscini-Platz 5, CH-8093 Zurich, Switzerland (corresponding author). E-mail: [email protected]
Andrea Frangi [email protected]
Professor, ETH Zurich, Institute of Structural Engineering, Stefano-Franscini-Platz 5, CH-8093 Zurich, Switzerland. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share