State-of-the-Art Reviews
Sep 5, 2022

Onshore Buried Steel Fuel Pipelines at Fault Crossings: A Review of Critical Analysis and Design Aspects

Publication: Journal of Pipeline Systems Engineering and Practice
Volume 13, Issue 4

Abstract

Onshore buried steel pipeline infrastructure is a critical component of the fuel supply system. Pipeline failure due to seismic actions is socially, environmentally, and economically unacceptable and thus the design of pipelines in geohazard areas, such as fault crossings, remains a hot topic for the pipeline community. There is an intense research effort on the evaluation of the pipeline mechanical behavior and the strength verification at fault crossings. Still, some aspects need in-depth consideration concerning practical applications. A state-of-the-art review is presented on three critical analysis and design aspects, namely, the calculation of the design fault displacement via deterministic and probabilistic methods, the effect of numerical modeling parameters such as soil spring properties, and the alternative pipe protection measures in terms of availability, efficiency, and selection process. The critical review offers a thorough insight into what is available and how to employ it in design, assisting engineers and pipe operators in improving pipe safety.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The partial financial support provided by the European Union’s Horizon 2020 research and innovation programs “INFRASTRESS—Improving resilience of sensitive industrial plants & infrastructures exposed to cyber-physical threats, by means of an open testbed stress-testing system” under Grant Agreement No. 833088 and “HYPERION—Development of a Decision Support System for Improved Resilience & Sustainable Reconstruction of historic areas to cope with Climate Change & Extreme Events based on Novel Sensors and Modelling tools” under Grant Agreement No. 821054 is gratefully acknowledged.

References

Abdulhameed, D., C. Cakiroglu, M. Lin, R. Cheng, J. Nychka, M. Sen, and S. Adeeb. 2016. “The Effect of internal pressure on the tensile strain capacity of X52 pipelines with circumferential flaws.” J. Pressure Vessel Technol. 138 (6): 061701. https://doi.org/10.1115/1.4033436.
Abrahamson, N. A., and J. J. Bommer. 2005. “Probability and uncertainty in seismic hazard analysis.” Earthquake Spectra 21 (2): 603–607. https://doi.org/10.1193/1.1899158.
American Lifelines Alliance. 2001. Guidelines for the design of buried steel pipe. Washington, DC: National Institute of Building Sciences.
Ansari, Y., G. Kouretzis, and S. W. Sloan. 2018. “Development of a prototype for modelling soil–pipe interaction and its application for predicting uplift resistance to buried pipe movements in sand.” Can. Geotech. J. 55 (10): 1451–1474. https://doi.org/10.1139/cgj-2017-0559.
Ansari, Y., G. Kouretzis, and S. W. Sloan. 2021. “Physical modelling of lateral sand–pipe interaction.” Géotechnique 71 (1): 60–75. https://doi.org/10.1680/jgeot.18.P.119.
ASCE. 1984. Guidelines for the seismic design of oil and gas pipeline systems. New York: ASCE.
ASCE. 2010. Minimum design loads for buildings and other structures. Reston, VA: ASCE.
ASCE. 2011. Guidelines for seismic evaluation and design of petrochemical facilities. Reston, VA: ASCE.
Ashrafy, M., M. Tahamouli Roudsari, and M. Hosseini. 2020. “New formulation for establishing the lateral interaction between buried steel pipeline and sandy soil subjected to strike-slip faulting.” J. Pressure Vessel Technol. Trans. ASME 142 (2): 021904. https://doi.org/10.1115/1.4044338.
ASME. 2018. Guide for gas transmission and distribution piping systems. New York: ASME.
Azizian, M., S. N. M. Tafreshi, and N. J. Darabi. 2020. “Experimental evaluation of an expanded polystyrene (EPS) block-geogrid system to protect buried pipes.” Soil Dyn. Earthquake Eng. 129: 105965. https://doi.org/10.1016/j.soildyn.2019.105965.
Bakalis, K., and D. Vamvatsikos. 2018. “Seismic fragility functions via nonlinear response history analysis.” J. Struct. Eng. 144 (10): 04018181. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002141.
Baker, J. W. 2007. “Probabilistic structural response assessment using vector-valued intensity measures.” Earthquake Eng. Struct. Dyn. 36 (13): 1861–1883. https://doi.org/10.1002/eqe.700.
Banushi, G., and N. Squeglia. 2018. “Seismic analysis of a buried operating steel pipeline with emphasis on the equivalent-boundary conditions.” J. Pipeline Syst. Eng. Pract. 9 (3): 04018005. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000316.
Banushi, G., N. Squeglia, and K. Thiele. 2018. “Innovative analysis of a buried operating pipeline subjected to strike-slip fault movement.” Soil Dyn. Earthquake Eng. 107: 234–249. https://doi.org/10.1016/j.soildyn.2018.01.015.
Bartlett, S. F., B. N. Lingwall, and J. Vaslestad. 2015. “Methods of protecting buried pipelines and culverts in transportation infrastructure using EPS geofoam.” Geotext. Geomembr. 43 (5): 450–461. https://doi.org/10.1016/j.geotexmem.2015.04.019.
Basili, R., et al. 2020. “Insights on the European fault-source model (EFSM20) as input to the 2020 update of the European seismic hazard model (ESHM20).” In Proc., EGU General Assembly 2020. Vienna, Austria: European Geosciences Union. https://doi.org/10.5194/egusphere-egu2020-7008.
Beju, Y. Z., and J. N. Mandal. 2017. “Combined use of jute geotextile-EPS geofoam to protect flexible buried pipes: Experimental and numerical studies.” Int. J. Geosynth. Ground Eng. 3: 32. https://doi.org/10.1007/s40891-017-0107-5.
Besstrashnov, V. M., and A. L. Strom. 2011. “Active faults crossing trunk pipeline routes: Some important steps to avoid disaster.” Nat. Hazards Earth Syst. Sci. 11 (5): 1433–1436. https://doi.org/10.5194/nhess-11-1433-2011.
Bommer, J. J. 2002. “Deterministic vs. probabilistic seismic hazard assessment: An exaggerated and obstructive dichotomy.” J. Earthquake Eng. 6: 43–73. https://doi.org/10.1080/13632460209350432.
Chakraborty, D. 2018. “Lateral resistance of buried pipeline in c-φ soil.” J. Pipeline Syst. Eng. Pract. 9 (1): 06017006. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000289.
Chakraborty, D., and J. Kumar. 2014. “Vertical uplift resistance of pipes buried in sand.” J. Pipeline Syst. Eng. Pract. 5 (1): 04013009. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000149.
Chaloulos, Y. K., G. D. Bouckovalas, and D. K. Karamitros. 2017. “Trench effects on lateral p-y relations for pipelines embedded in stiff soils and rocks.” Comput. Geotech. 83: 52–63. https://doi.org/10.1016/j.compgeo.2016.10.018.
Chaloulos, Y. K., G. D. Bouckovalas, S. D. Zervos, and A. L. Zampas. 2015. “Lateral soil-pipeline interaction in sand backfill: Effect of trench dimensions.” Comput. Geotech. 69: 442–451. https://doi.org/10.1016/j.compgeo.2015.05.014.
Cheng, X., C. Ma, R. Huang, S. Huang, and W. Yang. 2019. “Failure mode analysis of X80 buried steel pipeline under oblique-reverse fault.” Soil Dyn. Earthquake Eng. 125: 105723. https://doi.org/10.1016/j.soildyn.2019.105723.
Cheng, Y., and S. Akkar. 2017. “Probabilistic permanent fault displacement hazard via Monte Carlo simulation and its consideration for the probabilistic risk assessment of buried continuous steel pipelines.” Earthquake Eng. Struct. Dyn. 46 (4): 605–620. https://doi.org/10.1002/eqe.2805.
Choo, Y. W., T. H. Abdoun, M. J. O’Rourke, and D. Ha. 2007. “Remediation for buried pipeline systems under permanent ground deformation.” Soil Dyn. Earthquake Eng. 27 (12): 1043–1055. https://doi.org/10.1016/j.soildyn.2007.04.002.
Cornell, C. A., and H. Krawinkler. 2000. “Progress and challenges in seismic performance assessment.” PEER Center News 3 (2): 1–4.
Corona, E., and S. Kyriakides. 1991. “An experimental investigation of the degradation and buckling of circular tubes under cyclic bending and external pressure.” Thin-Walled Struct. 12 (3): 229–263. https://doi.org/10.1016/0263-8231(91)90048-N.
Corona, E., and S. Kyriakides. 2000. “Asymmetric collapse modes of pipes under combined bending and external pressure.” J. Eng. Mech. 126 (12): 1232–1239. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1232).
Council of Standards Australia/New Zealand Standards Approval Board. 2018. Pipelines—Gas and liquid petroleum—Part 1: Design and construction. Sydney, Australia: Council of Standards Australia.
CSA (Canadian Standards Association). 2019. Oil and gas pipeline systems. Etobicoke, Canada: CSA.
Cugnetto, P., D. Robert, and M. Kajtaz. 2021. “Improved design guidelines for pipelines subjected to vertical fault movement in dry sand.” J. Pipeline Syst. Eng. Pract. 12 (4): 04021056. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000593.
Daiyan, N., S. Kenny, R. Phillips, and R. Popescu. 2011. “Investigating pipeline-soil interaction under axial-lateral relative movements in sand.” Can. Geotech. J. 48 (11): 1683–1695. https://doi.org/10.1139/t11-061.
Danciu, L., et al. 2021. The 2020 update of the European seismic hazard model—ESHM20: Model overview. Zurich, Switzerland: ETH Zurich. https://doi.org/10.12686/a15.
Darigo, N., S. Rajah, and L. Boggess. 2008. “Preliminary surface fault assessment and conceptual fault crossing design of proposed gas pipeline, South-Central Alaska.” In Proc., 2008 7th Int. Pipeline Conf. New York: ASME. https://doi.org/10.1115/IPC2008-64431.
Davis, C. A. 2008. “Assessing geotechnical hazards for water pipes with uniform confidence level.” In Proc., Geotechnical Earthquake Engineering and Soil Dynamics Congress IV, 1–10. Reston, VA: ASCE. https://doi.org/10.1061/40975(318)194.
Demirci, H. E., S. Bhattacharya, D. K. Karamitros, and N. Alexander. 2018. “Experimental and numerical modelling of buried pipelines crossing reverse faults.” Soil Dyn. Earthquake Eng. 114: 198–214. https://doi.org/10.1016/j.soildyn.2018.06.013.
Dey, S., S. Chakraborty, and S. Tesfamariam. 2020. “Structural performance of buried pipeline undergoing strike-slip fault rupture in 3D using a non-linear sand model.” Soil Dyn. Earthquake Eng. 135: 106180. https://doi.org/10.1016/j.soildyn.2020.106180.
D.G. Honegger Consulting SSD Inc. 2009. Guidelines for constructing natural gas and liquid hydrocarbon pipelines through areas prone to landslide and subsidence hazards. Chantilly, VA: PRCI.
Dijkstra, G. J., S. A. Karamanos, A. M. Gresnigt, G. C. Sarvanis, and P. Dakoulas. 2021. “Actions due to severe ground-induced deformations.” In Geohazards and pipelines, 35–47. Berlin: Springer. https://doi.org/10.1007/978-3-030-49892-4.
Dilrukshi, S., and D. Wijewickreme. 2020. “Study of trench backfill particle size effects on lateral soil restraints on buried pipelines using discrete element modeling.” J. Pipeline Syst. Eng. Pract. 11 (1): 04019047. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000423.
Dorey, A. B., D. W. Murray, and J. J. R. Cheng. 2000. “An experimental evaluation of critical buckling strain criteria.” In Proc., 2000 Int. Pipeline Conf., 71–80. New York: ASME. https://doi.org/10.1115/IPC2000-110.
European Committee for Standardization. 2004. Eurocode 8: Design of structures for earthquake resistance—Part 1: General rules, seismic actions and rules for buildings. Brussels, Belgium: European Committee for Standardization.
European Committee for Standardization. 2006. Eurocode 8—Design of structures for earthquake resistance—Part 4: Silos, tanks and pipelines. Brussels, Belgium: CEN.
Fadaee, M., F. Farzaneganpour, and I. Anastasopoulos. 2020. “Response of buried pipeline subjected to reverse faulting.” Soil Dyn. Earthquake Eng. 132: 106090. https://doi.org/10.1016/j.soildyn.2020.106090.
Fragiadakis, M., D. Vamvatsikos, M. G. Karlaftis, N. D. Lagaros, and M. Papadrakakis. 2015. “Seismic assessment of structures and lifelines.” J. Sound Vib. 334: 29–56. https://doi.org/10.1016/j.jsv.2013.12.031.
Gantes, C. J., and G. D. Bouckovalas. 2013. “Seismic verification of the high pressure natural gas pipeline Komotini-Alexandroupoulis-Kipi in areas of active fault crossings.” Struct. Eng. Int. J. Int. Assoc. Bridge Struct. Eng. 23 (2): 204–208. https://doi.org/10.2749/101686613X13439149157164.
Gantes, C. J., and V. E. Melissianos. 2016. “Evaluation of seismic protection methods for buried fuel pipelines subjected to fault rupture.” Front. Built Environ. 2: 34. https://doi.org/10.3389/fbuil.2016.00034.
Gawande, K., R. Kiran, and H. P. Cherukuri. 2019. “A numerical study of the response of buried steel pipelines undergoing strike-slip fault.” Eng. Fail. Anal. 102: 203–218. https://doi.org/10.1016/j.engfailanal.2019.04.026.
Giardini, D., S. Kauzar, and the SERA Consortium. 2017. “EU H2020 SERA: Seismology and earthquake engineering research infrastructure alliance for Europe.” In Proc., 19th European Geosciences Union General Assembly (EGU 2017), EGU2017-14442-1. Vienna, Austria: European Geosciences Union.
Girgin, S., and E. Krausmann. 2016. “Historical analysis of U.S. onshore hazardous liquid pipeline accidents triggered by natural hazards.” J. Loss Prev. Process Ind. 40: 578–590. https://doi.org/10.1016/j.jlp.2016.02.008.
Greiner, R., and W. Guggenberger. 1998. “Buckling behaviour of axially loaded steel cylinders on local supports—With and without internal pressure.” Thin-Walled Struct. 31 (1–3): 159–167. https://doi.org/10.1016/S0263-8231(98)00011-1.
Gresnigt, A. M. 1986. Plastic design of buried pipelines. Delft, Netherlands: Stevin Laboratory of the Dept. of Civil Engineering, Delft Univ. of Technology.
Ha, D., T. H. Abdoun, M. J. O’Rourke, M. D. Symans, T. D. O’Rourke, M. C. Palmer, and H. E. Stewart. 2010. “Earthquake faulting effects on buried pipelines—Case history and centrifuge study.” J. Earthquake Eng. 14 (5): 646–669. https://doi.org/10.1080/13632460903527955.
Hamada, M., and T. D. O’Rourke. 1992. Case studies of liquefaction and lifeline performance during past earthquakes. New York: NCEER.
Hart, J. D., C. Lee, K. I. Kelson, and C. Hitchcock. 2004. “A unique pipeline fault crossing design for a highly focused fault.” In Proc., IPC2004 Int. Pipeline Conf. Reston, VA: ASCE. https://doi.org/10.1115/IPC2004-0102.
Hasegawa, N., H. Nagamine, and T. Imai. 2014. “Development of ‘Steel pipe for crossing fault (SPF)’ using buckling pattern for water pipelines.” JFE Tech. Rep. 19 (5): 61–65.
Honegger, D. G. 2017. Pipeline seismic design and assessment guideline. Houston, TX: PRCI.
Honegger, D. G., D. J. Nyman, E. R. Johnson, L. S. Cluff, and S. P. Sorensen. 2004. “Trans-Alaska pipeline system performance in the 2002 Denali fault, Alaska, earthquake.” Earthquake Spectra 20 (3): 707–738. https://doi.org/10.1193/1.1779239.
Houliara, S., and S. A. Karamanos. 2006. “Buckling and post-buckling of long pressurized elastic thin-walled tubes under in-plane bending.” Int. J. Non-Linear Mech. 41 (4): 491–511. https://doi.org/10.1016/j.ijnonlinmec.2005.11.002.
Indian Institute of Technology Kanpur. 2007. IITK-GSDMA guidelines for seismic design of buried pipelines. Kanpur, India: Indian Institute of Technology Kanpur.
International Organization for Standardization. 2019. Petroleum and natural gas industry—Pipeline transportation systems—Geological hazard risk management for onshore pipeline. Geneva: ISO.
Joshi, S., A. Prashant, A. Deb, and S. K. Jain. 2011. “Analysis of buried pipelines subjected to reverse fault motion.” Soil Dyn. Earthquake Eng. 31 (7): 930–940. https://doi.org/10.1016/j.soildyn.2011.02.003.
Jung, J. K., T. D. O’Rourke, and C. Argyrou. 2016b. “Multi-directional force-displacement response of underground pipe in sand.” Can. Geotech. J. 53 (11): 1763–1781. https://doi.org/10.1139/cgj-2016-0059.
Jung, J. K., T. D. O’Rourke, and N. A. Olson. 2013a. “Uplift soil-pipe interaction in granular soil.” Can. Geotech. J. 50 (7): 744–753. https://doi.org/10.1139/cgj-2012-0357.
Jung, J. K., T. D. O’Rourke, N. A. Olson, T. D. O’Rourke, and N. A. Olson. 2013b. “Lateral soil-pipe interaction in dry and partially saturated sand.” J. Geotech. Geoenviron. Eng. 139 (12): 2028–2036. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000960.
Karamanos, S. A. 2002. “Bending instabilities of elastic tubes.” Int. J. Solids Struct. 39 (2): 2059–2085. https://doi.org/10.1016/S0020-7683(02)00085-9.
Karamanos, S. A. et al. 2021. “Numerical models for pipelines under large ground-induced deformations.” In Geohazards and pipelines, 125–170. Berlin: Springer. https://doi.org/10.1007/978-3-030-49892-4_7.
Karamanos, S. A., G. C. Sarvanis, B. D. Keil, and R. J. Card. 2017. “Analysis and design of buried steel water pipelines in seismic areas.” J. Pipeline Syst. Eng. Pract. 8 (4): 04017018. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000280.
Karamitros, D. K., G. D. Bouckovalas, and G. P. Kouretzis. 2007. “Stress analysis of buried steel pipelines at strike-slip fault crossings.” Soil Dyn. Earthquake Eng. 27 (3): 200–211. https://doi.org/10.1016/j.soildyn.2006.08.001.
Karamitros, D. K., G. D. Bouckovalas, G. P. Kouretzis, and V. Gkesouli. 2011. “An analytical method for strength verification of buried steel pipelines at normal fault crossings.” Soil Dyn. Earthquake Eng. 31 (11): 1452–1464. https://doi.org/10.1016/j.soildyn.2011.05.012.
Keaton, J. R., and D. G. Honegger. 2008. “Geotechnical challenges for design of a crude oil pipeline across an active normal fault in an urban area.” In Proc., 2008 7th Int. Pipeline Conf., 167–172. New York: ASME. https://doi.org/10.1115/IPC2008-64505.
Koch, T. 1933. “Analysis and effects of current movement on an active fault in Buena Vista Hills Oil Field, Kern County, California.” AAPG Bull. 17 (6): 694–712. https://doi.org/10.1306/3D932B68-16B1-11D7-8645000102C1865D.
Kouretzis, G., and J. Wu. 2021. “Recommendations for determining nonlinear Winkler spring parameters for buried steel pipe stress analysis applications.” Comput. Geotech. 135 (3): 104196. https://doi.org/10.1016/j.compgeo.2021.104196.
Kouretzis, G. P., G. D. Bouckovalas, and D. K. Karamitros. 2011. “Seismic verification of long cylindrical underground structures considering Rayleigh wave effects.” Tunnelling Underground Space Technol. 26 (6): 789–794. https://doi.org/10.1016/j.tust.2011.05.001.
Kouretzis, G. P., K. Krabbenhøft, D. Sheng, and S. W. Sloan. 2014. “Soil-buried pipeline interaction for vertical downwards relative offset.” Can. Geotech. J. 51 (10): 1087–1094. https://doi.org/10.1139/cgj-2014-0029.
Kouretzis, G. P., D. Sheng, and S. W. Sloan. 2013. “Sand-pipeline-trench lateral interaction effects for shallow buried pipelines.” Comput. Geotech. 54: 53–59. https://doi.org/10.1016/j.compgeo.2013.05.008.
Kyriakides, S., and E. Corona. 2007. Mechanics of offshore pipelines: Volume 1 Buckling and collapse. Oxford, UK: Elsevier.
Leonard, M. 2014. “Self-consistent earthquake fault-scaling relations: Update and extension to stable continental strike-slip faults.” Bull. Seismol. Soc. Am. 104 (6): 2953–2965. https://doi.org/10.1785/0120140087.
Limam, A., L. H. Lee, E. Corona, and S. Kyriakides. 2010. “Inelastic wrinkling and collapse of tubes under combined bending and internal pressure.” Int. J. Mech. Sci. 52 (5): 637–647. https://doi.org/10.1016/j.ijmecsci.2009.06.008.
Liu, A., Y. Hu, F. Zhao, X. Li, S. Takada, and L. Zhao. 2004. “An equivalent-boundary method for the shell analysis of buried pipelines under fault movement.” Acta Seismol. Sin. 17 (1): 150–156. https://doi.org/10.1007/s11589-004-0078-1.
Liu, B., X. J. Liu, and H. Zhang. 2009. “Strain-based design criteria of pipelines.” J. Loss Prev. Process Ind. 22 (6): 884–888. https://doi.org/10.1016/j.jlp.2009.07.010.
Liu, M., Y. Wang, D. Horsley, S. Nanney, and U. S. Dot. 2012a. “Multi-tier tensile strain models for strain-based design part 3—Model evaluation against experimental data.” In Proc., 9th Int. Pipeline Conf. New York: ASME. https://doi.org/10.1115/IPC2012-90659.
Liu, M., Y.-Y. Wang, Y. Song, D. Horsley, and S. Nanney. 2012b. “Multi-tier tensile strain models for strain-based design part 2—Development and formulation of tensile strain capacity.” In Proc., 9th Int. Pipeline Conf. New York: ASME. https://doi.org/10.1115/IPC2012-90659.
Liu, X., H. Zhang, K. Wu, M. Xia, Y. Chen, and M. Li. 2017. “Buckling failure mode analysis of buried X80 steel gas pipeline under reverse fault displacement.” Eng. Fail. Anal. 77: 50–64. https://doi.org/10.1016/j.engfailanal.2017.02.019.
Marino, G., and A. Osouli. 2020. “Slip resistance behavior of coal tar-coated steel pipelines buried in clayey and sandy Backfills from ground movement.” J. Pipeline Syst. Eng. Pract. 11 (3): 05020001. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000465.
Meidani, M., M. A. Meguid, and L. E. Chouinard. 2017. “Evaluation of soil–pipe interaction under relative axial ground movement.” J. Pipeline Syst. Eng. Pract. 8 (4): 04017009. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000269.
Melissianos, V. E., L. Danciu, D. Vamvatsikos, and R. Basili. 2022. “Fault displacement hazard estimation at lifeline-fault crossings: A baseline approach for engineering applications.” Bull. Earthquake Eng. Under review.
Melissianos, V. E., and C. J. Gantes. 2017. “Numerical modeling aspects of buried pipeline-fault crossing.” In Computational methods in applied sciences, 1–26. Berlin: Springer. https://doi.org/10.1007/978-3-319-47798-5_1.
Melissianos, V. E., and C. J. Gantes. 2019. “Protection measures for buried steel pipelines subjected to fault rupture.” In Proc., 2nd Int. Conf. on Natural Hazards & Infrastructure (ICONHIC2019). Chania, Greece: National Technical Univ. of Athens.
Melissianos, V. E., G. P. Korakitis, C. J. Gantes, and G. D. Bouckovalas. 2016. “Numerical evaluation of the effectiveness of flexible joints in buried pipelines subjected to strike-slip fault rupture.” Soil Dyn. Earthquake Eng. 90: 395–410. https://doi.org/10.1016/j.soildyn.2016.09.012.
Melissianos, V. E., X. A. Lignos, K. K. Bachas, and C. J. Gantes. 2017a. “Experimental investigation of pipes with flexible joints under fault rupture.” J. Constr. Steel Res. 128: 633–648. https://doi.org/10.1016/j.jcsr.2016.09.026.
Melissianos, V. E., D. Vamvatsikos, and C. J. Gantes. 2017b. “Performance assessment of buried pipelines at fault crossings.” Earthquake Spectra 33 (1): 201–218. https://doi.org/10.1193/122015EQS187M.
Melissianos, V. E., D. Vamvatsikos, and C. J. Gantes. 2017c. “Performance-based assessment of protection measures for buried pipes at strike-slip fault crossings.” Soil Dyn. Earthquake Eng. 101: 1–11. https://doi.org/10.1016/j.soildyn.2017.07.004.
Melissianos, V. E., D. Vamvatsikos, and C. J. Gantes. 2020. “Methodology for failure mode prediction of onshore buried steel pipelines subjected to reverse fault rupture.” Soil Dyn. Earthquake Eng. 135: 106116. https://doi.org/10.1016/j.soildyn.2020.106116.
Mohr, W. 2003. Strain-based design of pipelines. Rep. No. 45892GTH. Columbus, OH: Edison Welding Institute.
Mokhtari, M., and A. Alavi Nia. 2015. “The influence of using CFRP wraps on performance of buried steel pipelines under permanent ground deformations.” Soil Dyn. Earthquake Eng. 73: 29–41. https://doi.org/10.1016/j.soildyn.2015.02.014.
Monroy-Concha, M., D. Wijewickreme, and D. G. Honegger. 2012. “Effectiveness of geotextile-lined pipeline trenches subjected to relative lateral seismic fault ground displacements.” In Proc., 15th World Conf. on Earthquake Engineering. Lisboa, Portugal: Sociedade Portuguesa de Engenharia Sismica.
Moradi, M., M. Rojhan, A. Galandarzadeh, and S. Takada. 2013. “Centrifuge modeling of buried continuous pipelines subjected to normal faulting.” Earthquake Eng. Eng. Vibr. 12: 155–164. https://doi.org/10.1007/s11803-013-0159-z.
Nair, G. S., S. R. Dash, and G. Mondal. 2018. “Review of pipeline performance during earthquakes since 1906.” J. Perform. Constr. Facil. 32 (6): 04018083. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001214.
Nair, G. S., S. R. Dash, and G. Mondal. 2019. “Effect of field bends on the response of buried pipelines crossing strike-slip fault.” In Geotechnics for Transportation Infrastructure. Lecture Notes in Civil Engineering, edited by R. Sundaram, J. Shahu, and V. Havanagi. Singapore: Springer Nature. https://doi.org/10.1007/978-981-13-6701-4_29.
Nguyen, K. T., and D. Asimaki. 2018. “A modified uniaxial Bouc-Wen model for the simulation of transverse lateral pipe-cohesionless soil interaction.” In Proc., Geotechnical Earthquake Engineering and Soil Dynamics V, 25–35. New York: ASME. https://doi.org/10.1061/9780784481479.003.
Ni, P., S. Mangalathu, and K. Liu. 2020. “Enhanced fragility analysis of buried pipelines through Lasso regression.” Acta Geotech. 15: 471–487. https://doi.org/10.1007/s11440-018-0719-5.
Ni, P., X. Qin, and Y. Yi. 2018. “Use of tire-derived aggregate for seismic mitigation of buried pipelines under strike-slip faults.” Soil Dyn. Earthquake Eng. 115: 495–506. https://doi.org/10.1016/j.soildyn.2018.09.018.
Nyman, D. J., E. M. Lee, and J. M. E. Audibert. 2008. “Mitigating geohazards for international pipeline projects: Challenges and lessons learned.” In Proc., Biennial Int. Pipeline Conf., IPC. New York: ASME. https://doi.org/10.1115/IPC2008-64405.
Ono, K., Y. Yokota, Y. Sawada, T. Kawabata, K. Ono, Y. Yokota, Y. Sawada, and T. Kawabata. 2017. “Lateral force-displacement prediction for buried pipe under different effective stress condition.” Int. J. Geotech. Eng. 12 (4): 420–428. https://doi.org/10.1080/19386362.2017.1288356.
O’Rourke, M. J., and J. X. Liu. 2012. Seismic design of buried and offshore pipelines. New York: Multidisciplinary Center for Earthquake Engineering Research.
O’Rourke, T. D., J. K. Jung, and C. Argyrou. 2016. “Underground pipeline response to earthquake-induced ground deformation.” Soil Dyn. Earthquake Eng. 91: 272–283. https://doi.org/10.1016/j.soildyn.2016.09.008.
Papadakis, G. A. 1999. “Major hazard pipelines: A comparative study of onshore transmission accidents.” J. Loss Prev. Process Ind. 12 (1): 91–107. https://doi.org/10.1016/S0950-4230(98)00048-5.
Prion, H. G. L., and P. C. Birkemoe. 1992. “Beam-column behavior of fabricated steel tubular members.” J. Struct. Eng. 118 (5): 1213–1232. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1213).
Qin, X., P. Ni, and Y. J. Du. 2019. “Buried rigid pipe-soil interaction in dense and medium sand backfills under downward relative movement: 2D finite element analysis.” Transp. Geotech. 21: 100286. https://doi.org/10.1016/j.trgeo.2019.100286.
Rahman, M. A., and H. Taniyama. 2015. “Analysis of a buried pipeline subjected to fault displacement: A DEM and FEM study.” Soil Dyn. Earthquake. Eng. 71: 49–62. https://doi.org/10.1016/j.soildyn.2015.01.011.
Rasouli, H., and B. Fatahi. 2020. “Geofoam blocks to protect buried pipelines subjected to strike-slip fault rupture.” Geotext. Geomembr. 48 (3): 257–274. https://doi.org/10.1016/j.geotexmem.2019.11.011.
Robert, D. J. 2017. “A modified Mohr-Coulomb model to simulate the behavior of pipelines in unsaturated soils.” Comput. Geotech. 91: 146–160. https://doi.org/10.1016/j.compgeo.2017.07.004.
Robert, D. J., A. Britto, and S. Setunge. 2020. “Efficient approach to simulate soil–pipeline interaction.” J. Pipeline Syst. Eng. Pract. 11 (1): 04019046. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000412.
Robert, D. J., K. Soga, T. D. O’Rourke, and T. Sakanoue. 2016. “Lateral load-displacement behavior of pipelines in unsaturated sands.” J. Geotech. Geoenviron. Eng. 142 (11): 04016060. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001504.
Robert, D. J., and N. I. Thusyanthan. 2018. “Uplift resistance of buried pipelines in partially saturated sands.” Comput. Geotech. 97: 7–19. https://doi.org/10.1016/j.compgeo.2017.12.010.
Rofooei, F. R., N. K. A. Attari, and H. H. Jalali. 2018. “New method of modeling the behavior of buried steel distribution pipes subjected to reverse faulting.” J. Pipeline Syst. Eng. Pract. 9 (1): 04017029. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000296.
Rojhani, M., M. Moradi, A. Galandarzadeh, and S. Takada. 2012. “Centrifuge modeling of buried continuous pipelines subjected to reverse faulting.” Can. Geotech. J. 49 (6): 659–670. https://doi.org/10.1139/t2012-022.
Royal Netherlands Standardization Institute. 2020. Requirements for pipeline systems—Part 1: General requirements. Delft, Netherlands: Royal Netherlands Standardization Institute.
Roy, K., B. Hawlader, S. Kenny, and I. Moore. 2016. “Finite element modeling of lateral pipeline-soil interactions in dense sand.” Can. Geotech. J. 53 (3): 490–504. https://doi.org/10.1139/cgj-2015-0171.
Roy, K., B. Hawlader, S. Kenny, and I. Moore. 2018a. “Lateral resistance of pipes and strip anchors buried in dense sand.” Can. Geotech. J. 55 (12): 1812–1823. https://doi.org/10.1139/cgj-2017-0492.
Roy, K., B. Hawlader, S. Kenny, and I. Moore. 2018b. “Upward pipe–soil interaction for shallowly buried pipelines in dense sand.” J. Geotech. Geoenviron. Eng. 144 (11): 04018078. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001957.
Sarvanis, G. C., and S. A. Karamanos. 2017. “Analytical model for the strain analysis of continuous buried pipelines in geohazard areas.” Eng. Struct. 152: 57–69. https://doi.org/10.1016/j.engstruct.2017.08.060.
Sarvanis, G. C., S. A. Karamanos, P. Vazouras, E. Mecozzi, A. Lucci, and P. Dakoulas. 2018. “Permanent earthquake-induced actions in buried pipelines: Numerical modeling and experimental verification.” Earthquake Eng. Struct. Dyn. 47 (4): 966–987. https://doi.org/10.1002/eqe.3001.
Sim, W. W., I. Towhata, S. Yamada, and G. J. M. Moinet. 2012. “Shaking table tests modelling small diameter pipes crossing a vertical fault.” Soil Dyn. Earthquake Eng. 35: 59–71. https://doi.org/10.1016/j.soildyn.2011.11.005.
Singhal, A. C. 1980. Strength characteristics of buried jointed pipelines, 1–172. New York: Arizona State Univ.
Soveiti, S., and R. Mosalmani. 2020. “Mechanical behavior of buried composite pipelines subjected to strike-slip fault movement.” Soil Dyn. Earthquake Eng. 135: 106195. https://doi.org/10.1016/j.soildyn.2020.106195.
Strogen, B., K. Bell, H. Breunig, and D. Zilberman. 2016. “Environmental, public health, and safety assessment of fuel pipelines and other freight transportation modes.” Appl. Energy 171: 266–276. https://doi.org/10.1016/j.apenergy.2016.02.059.
Strom, A., A. Ivaschenko, and A. Kozhurin. 2011. “Assessment of the design displacement values at seismic fault crossings and of their excess probability.” J. Mountain Sci. 8: 228–233. https://doi.org/10.1007/s11629-011-2085-8.
Tahamouli Roudsari, M., M. Hosseini, M. Ashrafy, M. Azin, M. Nasimi, M. Torkaman, and A. Khorsandi. 2019. “New method to evaluate the buried pipeline–sandy soil interaction subjected to strike slip faulting.” J. Earthquake Eng. 26 (1): 89–112. https://doi.org/10.1080/13632469.2019.1662343.
Talebi, F., and J. Kiyono. 2020. “Introduction of the axial force terms to governing equation for buried pipeline subjected to strike-slip fault movements.” Soil Dyn. Earthquake Eng. 133: 106125. https://doi.org/10.1016/j.soildyn.2020.106125.
Thingbaijam, K. K. S., P. M. Mai, and K. Goda. 2017. “New empirical earthquake source-scaling laws.” Bull. Seismol. Soc. Am. 107 (5): 2225–2246. https://doi.org/10.1785/0120170017.
Thompson, S., C. Madugo, N. Lewandowski, S. Lindvall, and M. Ketabdar. 2018. “Fault displacement hazard analysis methods and strategies for pipelines.” In Proc., 11th National National Conf. in Earthquake Engineering. Los Angeles: Earthquake Engineering Research Institute.
Tian, Y., and M. J. Cassidy. 2011. “Pipe-soil interaction model incorporating large lateral displacements in calcareous sand.” J. Geotech. Geoenviron. Eng. 137 (3): 279–287. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000428.
Trautmann, C. H., and T. D. O’Rourke. 1983. Behavior of pipe in dry sand under lateral and uplift loading. Geotechnical Engineering Rep. No. 83-6. Ithaca, NY: Cornell Univ.
Trifonov, O. V. 2015. “Numerical stress-strain analysis of buried steel pipelines crossing active strike-slip faults with an emphasis on fault modeling aspects.” J. Pipeline Syst. Eng. Pract. 6 (1): 04014008. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000177.
Trifonov, O. V. 2018. “The effect of variation of soil conditions along the pipeline in the fault-crossing zone.” Soil Dyn. Earthquake Eng. 104: 437–448. https://doi.org/10.1016/j.soildyn.2017.11.008.
Trifonov, O. V., and V. P. Cherniy. 2014. “Analysis of stress-strain state in a steel pipe strengthened with a composite wrap.” J. Pressure Vessel Technol. Trans. ASME 136 (5): 051202. https://doi.org/10.1115/1.4027229.
Trifonov, O. V., and V. P. Cherniy. 2016. “Application of composite wraps for strengthening of buried steel pipelines crossing active faults.” J. Pressure Vessel Technol. Trans. ASME 138 (6): 060902. https://doi.org/10.1115/1.4032915.
Tsai, C. C., P. Meymand, E. Dawson, and S. A. Wong. 2015. “Behaviour of segmental pipeline protective vaults subjected to fault offset.” Struct. Infrastruct. Eng. 11 (10): 1369–1382. https://doi.org/10.1080/15732479.2014.964733.
Tsatsis, A., M. Loli, and G. Gazetas. 2019. “Pipeline in dense sand subjected to tectonic deformation from normal or reverse faulting.” Soil Dyn. Earthquake Eng. 127: 105780. https://doi.org/10.1016/j.soildyn.2019.105780.
Tsinidis, G., L. Di Sarno, A. Sextos, and P. Furtner. 2020. “Optimal intensity measures for the structural assessment of buried steel natural gas pipelines due to seismically-induced axial compression at geotechnical discontinuities.” Soil Dyn. Earthquake. Eng. 131: 106030. https://doi.org/10.1016/j.soildyn.2019.106030.
Uckan, E., B. Akbas, J. Shen, W. Rou, F. Paolacci, and M. J. O’Rourke. 2015. “A simplified analysis model for determining the seismic response of buried steel pipes at strike-slip fault crossings.” Soil Dyn. Earthquake Eng. 75: 55–65. https://doi.org/10.1016/j.soildyn.2015.03.001.
United Kingdom Onshore Pipeline Operators’ Association. 2019. Good practice guide—Seismic screening assessment of UK onshore pipelines and associated installations UKOPA/GP/019 Edition 1. Derbyshire, UK: United Kingdom Onshore Pipeline Operators’ Association.
United Nations. 2015. Sendai framework for disaster risk reduction 2015-2030. Geneva: United Nations.
Valsamis, A. I., and G. D. Bouckovalas. 2020. “Analytical methodology for the verification of buried steel pipelines with flexible joints crossing strike-slip faults.” Soil Dyn. Earthquake Eng. 138: 106280. https://doi.org/10.1016/j.soildyn.2020.106280.
Valsamis, A. I., G. D. Bouckovalas, and C. J. Gantes. 2020. “Alternative design of buried pipelines at active fault crossings using flexible joints.” Int. J. Press. Vessels Pip. 180: 104038. https://doi.org/10.1016/j.ijpvp.2019.104038.
Vasilikis, D., and S. A. Karamanos. 2011. “Buckling design of confined steel cylinders under external pressure.” J. Pressure Vessel Technol. Trans. ASME 133 (1): 011205. https://doi.org/10.1115/1.4002540.
Vazouras, P., P. Dakoulas, and S. A. Karamanos. 2015. “Pipe-soil interaction and pipeline performance under strike-slip fault movements.” Soil Dyn. Earthquake Eng. 72: 48–65. https://doi.org/10.1016/j.soildyn.2015.01.014.
Vazouras, P., and S. A. Karamanos. 2017. “Structural behavior of buried pipe bends and their effect on pipeline response in fault crossing areas.” Bull. Earthquake Eng. 15: 4999–5024. https://doi.org/10.1007/s10518-017-0148-0.
Vazouras, P., S. A. Karamanos, and P. Dakoulas. 2010. “Finite element analysis of buried steel pipelines under strike-slip fault displacements.” Soil Dyn. Earthquake Eng. 30: 1361–1376. https://doi.org/10.1016/j.soildyn.2010.06.011.
Wang, J. H. 2018. “A review on scaling of earthquake faults.” Terr. Atmos. Oceanic Sci. 29 (6): 589–610. https://doi.org/10.3319/TAO.2018.08.19.01.
Wang, Y. 2019. Guidance for assessing buried pipelines after a ground movement event. Houston, TX: PRCI.
Wang, Y., W. Cheng, and D. Horsley. 2004. “Tensile strain limits of buried defects in pipeline girth welds.” In Proc., Int. Pipeline Conf. New York: ASME. https://doi.org/10.1115/IPC2004-0524.
Wang, Y., M. Liu, F. Zhang, D. Horsley, and S. Nanney. 2012. “Multi-tier tensile strain models for strain-based design part 1—Fundamental basis.” In Proc., 9th Int. Pipeline Conf. New York: ASME. https://doi.org/10.1115/IPC2012-90690.
Wells, D. L., and K. J. Coppersmith. 1994. “New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacements.” Bull. Seismol. Soc. Am. 84 (4): 974–1002. https://doi.org/10.1785/BSSA0840040974.
Wham, B. P., B. A. Berger, and T. D. O’Rourke. 2019. “Hazard-resistant steel pipeline response to large fault rupture.” In Geo-Congress 2019: Earthquake Engineering and Soil Dynamics, Geotechnical Special Publication 308, edited by C. L. Meehan, S. Kumar, M. A. Pando, and J. T. Coe, 1–11. Reston, VA: ASCE. https://doi.org/10.1061/9780784482100.001.
Wijewickreme, D., H. Karimian, and D. Honegger. 2009. “Response of buried steel pipelines subjected to relative axial soil movement.” Can. Geotech. J. 46 (7): 735–752. https://doi.org/10.1139/T09-019.
Wijewickreme, D., M. Monroy, D. G. Honegger, and D. J. Nyman. 2017. “Soil restraints on buried pipelines subjected to reverse-fault displacement.” Can. Geotech. J. 54 (10): 1472–1481. https://doi.org/10.1139/cgj-2016-0564.
Wu, J., G. Kouretzis, L. Suwal, Y. Ansari, and S. W. Sloan. 2020. “Shallow and deep failure mechanisms during uplift and lateral dragging of buried pipes in sand.” Can. Geotech. J. 57 (10): 1472–1483. https://doi.org/10.1139/cgj-2019-0281.
Xie, X., M. D. Symans, M. J. O’Rourke, T. H. Abdoun, T. D. O’Rourke, M. C. Palmer, and H. E. Stewart. 2013. “Numerical modeling of buried HDPE pipelines subjected to normal faulting: A case study.” Earthquake Spectra 29 (2): 609–632. https://doi.org/10.1193/1.4000137.
Xu, L., and M. Lin. 2017. “Analysis of buried pipelines subjected to reverse fault motion using the vector form intrinsic finite element method.” Soil Dyn. Earthquake Eng. 93: 61–83. https://doi.org/10.1016/j.soildyn.2016.12.004.
Xu, R., R. Jiang, and T. Qu. 2021. “Review of dynamic response of buried pipelines.” J. Pipeline Syst. Eng. Pract. 12 (2): 03120003. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000527.
Youngs, R. R., et al. 2003. “A methodology for probabilistic fault displacement hazard analysis (PFDHA).” Earthquake Spectra 19 (1): 191–219. https://doi.org/10.1193/1.1542891.
Yun, H., and S. Kyriakides. 1990. “On the beam and shell modes of buckling of buried pipelines.” Soil Dyn. Earthquake Eng. 9 (4): 179–193. https://doi.org/10.1016/S0267-7261(05)80009-0.
Zeng, X., F. Dong, X. Xie, and G. Du. 2019. “A new analytical method of strain and deformation of pipeline under fault movement.” Int. J. Press. Vessels Pip. 172: 199–211. https://doi.org/10.1016/j.ijpvp.2019.03.005.
Zhang, J., Z. Liang, H. Zhang, D. Feng, and C. Xia. 2016a. “Failure analysis of directional crossing pipeline and design of a protective device.” Eng. Fail. Anal. 66: 187–201. https://doi.org/10.1016/j.engfailanal.2016.04.019.
Zhang, L., X. Zhao, X. Yan, and X. Yang. 2016b. “A new finite element model of buried steel pipelines crossing strike-slip faults considering equivalent boundary springs.” Eng. Struct. 123: 30–44. https://doi.org/10.1016/j.engstruct.2016.05.042.
Zhang, L., X. Zhao, X. Yan, and X. Yang. 2017. “Elastoplastic analysis of mechanical response of buried pipelines under strike-slip faults.” Int. J. Geomech. 17 (4): 04016109. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000790.

Information & Authors

Information

Published In

Go to Journal of Pipeline Systems Engineering and Practice
Journal of Pipeline Systems Engineering and Practice
Volume 13Issue 4November 2022

History

Published online: Sep 5, 2022
Published in print: Nov 1, 2022
Discussion open until: Feb 5, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Research Associate, Institute of Steel Structures, School of Civil Engineering, National Technical Univ. of Athens, 9 Iroon Polytechneiou St., Zografou Campus, GR-15780 Athens, Greece. ORCID: https://orcid.org/0000-0002-1589-0697. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Modern Bitumen Oil Mixture Models in Ashalchinsky Field with Low-Viscosity Solvent at Various Temperatures and Solvent Concentrations, Energies, 10.3390/en16010395, 16, 1, (395), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share