Technical Papers
Jan 4, 2019

Prediction of Liquefaction Potential of Sandy Soil around a Submarine Pipeline under Earthquake Loading

Publication: Journal of Pipeline Systems Engineering and Practice
Volume 10, Issue 2

Abstract

Liquefaction of sandy porous soil under earthquake waves is the most important feature governing the serviceability of underground pipelines. In this study, an artificial neural network (ANN) is combined with the mesh-free local radial basis function differential quadrature (LRBF-DQ) method to estimate the effect of soil properties such as the hydraulic conductivity, unit weight, Poisson’s ratio, and deformation module on the excess pore fluid pressure and the liquefaction potential surrounding a submarine pipeline under earthquake loading. The LRBF-DQ method was used to solve the governing equations. The results obtained by the LRBF-DQ codes and ANN show that with an increase of Poisson’s ratio, the deformation module, and hydraulic conductivity of the porous seabed, the pore fluid pressure and the liquefaction potential are reduced. Moreover, the sensitivity analysis of the ANN model showed that hydraulic conductivity has a significant impact on the excess pore pressure compared with other parameters.

Get full access to this article

View all available purchase options and get full access to this article.

References

Anvari, S. M., I. Shooshpasha, and S. S. Kutanaei. 2017. “Effect of granulated rubber on shear strength of fine-grained sand.” J. Roc. Mech. Geotech. Eng. 9 (5): 936–944. https://doi.org/10.1016/j.jrmge.2017.03.008.
Azadi, M., S. Pourakbar, and A. Kashfi. 2013. “Assessment of optimum settlement of structure adjacent urban tunnel by using neural network methods.” Tunnelling Underground Space Technol. 37: 1–9. https://doi.org/10.1016/j.tust.2013.03.002.
Bayat, M., and G. R. Abdollahzade. 2011. “Analysis of the steel braced frames equipped with ADAS devices under the far field records.” Lat. Am. J. Solids Struct. 8 (2): 163–181. https://doi.org/10.1590/S1679-78252011000200004.
Bayat, M., and M. Bayat. 2014. “Seismic behavior of special moment-resisting frames with energy dissipating devices under near source ground motions.” Steel Compos. Struct. 16 (5): 533–557. https://doi.org/10.12989/scs.2014.16.5.533.
Bayat, M., M. Bayat, and I. Pakar. 2014. “Nonlinear vibration of an electrostatically actuated microbeam.” Lat. Am. J. Solids Struct. 11 (3): 534–544. https://doi.org/10.1590/S1679-78252014000300009.
Bayat, M., and I. Pakar. 2012. “Accurate analytical solution for nonlinear free vibration of beams.” Struct. Eng. Mech. 43 (3): 337–347. https://doi.org/10.12989/sem.2012.43.3.337.
Bayat, M., and I. Pakar. 2013a. “Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffnesses.” Earthquake Eng. Eng. Vib. 12 (3): 411–420. https://doi.org/10.1007/s11803-013-0182-0.
Bayat, M., and I. Pakar. 2013b. “On the approximate analytical solution to non-linear oscillation systems.” Shock Vib. 20 (1): 43–52. https://doi.org/10.1155/2013/549213.
Bayat, M., I. Pakar, and M. Bayat. 2015. “Nonlinear vibration of mechanical systems by means of homotopy perturbation method.” Kuwait J. Sci. Eng. 42 (3): 64–85.
Bayat, M., I. Pakar, and M. Bayat. 2016. “Nonlinear vibration of conservative oscillators using analytical approaches.” Struct. Eng. Mech. 59 (4): 671–682. https://doi.org/10.12989/sem.2016.59.4.671.
Baziar, M. H., and Y. Jafarian. 2007. “Assessment of liquefaction triggering using strain energy concept and ANN model: Capacity energy.” Soil Dyn. Earthquake Eng. 27 (12): 1056–1072. https://doi.org/10.1016/j.soildyn.2007.03.007.
Biot, M. A. 1941. “General theory of three-dimensional consolidation.” J. Appl. Phys. 12 (2): 155–164. https://doi.org/10.1063/1.1712886.
Cha, D. F., H. Zhang, and M. Blumenstein. 2011. “Prediction of maximum wave-induced liquefaction in porous seabed using multi-artificial neural network model.” Ocean Eng. 38 (7): 878–887. https://doi.org/10.1016/j.oceaneng.2010.08.002.
Cha, D. H., D. S. Jeng, and M. Blumenstein. 2004. “Assessment of wave-induced liquefaction in a porous seabed: Application of an ANN model.” Asian J. Inf. Technol. 3 (5): 386–399.
Choobbasti, A. J., F. Farrokhzad, A. Nadimi, and S. S. Kutanaei. Forthcoming. “Effects of copper sludge on cemented clay using ultrasonic pulse velocity.” J. Adhes. Sci. Technol. https://doi.org/10.1080/01694243.2018.1471842.
Choobbasti, A. J., and S. S. Kutanaei. 2017a. “Effect of fiber reinforcement on deformability properties of cemented sand.” J. Adhes. Sci. Technol. 31 (14): 1576–1590. https://doi.org/10.1080/01694243.2016.1264681.
Choobbasti, A. J., and S. S. Kutanaei. 2017b. “Microstructure characteristics of cement-stabilized sandy soil using nanosilica.” J. Roc. Mech. Geotech. Eng. 9 (5): 981–988. https://doi.org/10.1016/j.jrmge.2017.03.015.
Choobbasti, A. J., H. Tavakoli, and S. S. Kutanaei. 2014. “Modeling and optimization of a trench layer location around a pipeline using artificial neural networks and particle swarm optimization algorithm.” Tunnelling Underground Space Technol. 40: 192–202. https://doi.org/10.1016/j.tust.2013.10.003.
Choobbasti, A. J., A. Vafaei, and S. S. Kutanaei. 2015. “Mechanical properties of sandy soil improved with cement and nanosilica.” Open Eng. 5 (1): 111–116. https://doi.org/10.1515/eng-2015-0011.
Choobbasti, A. J., A. Vafaei, and S. S. Kutanaei. 2018. “Static and cyclic triaxial behavior of cemented sand with nanosilica.” J. Mater. Civ. Eng. 30 (10): 04018269. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002464.
Edalati, S. A., M. Bayat, I. Pakar, and M. Bayat. 2016. “A novel approximate solution for nonlinear problems of vibratory systems.” Struct. Eng. Mech. 57 (6): 1039–1049. https://doi.org/10.12989/sem.2016.57.6.1039.
Goh, A. T. C. 1995. “Seismic liquefaction potential assessed by neural networks.” J. Geotech. Eng. 120 (9): 1467–1480. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1467).
Janalizadeh, A., S. S. Kutanaei, and E. Ghasemi. 2013. “Control volume finite element modeling of free convection inside an inclined porous enclosure with a sinusoidal hot wall.” Sci. Iran A 20 (5): 1401–1414.
Jeng, D. S., D. H. Cha, and M. Blumenstein. 2004. “Neural network model for the prediction of the wave-induced liquefaction potential in a porous seabed.” Ocean Eng. 31 (17–18): 2073–2086. https://doi.org/10.1016/j.oceaneng.2004.05.006.
Juang, C. H., and C. J. Chen. 1999. “CPT-based liquefaction evaluation using neural network.” J. Comput. Aided Civ. Inf. 14 (3): 221–229. https://doi.org/10.1111/0885-9507.00143.
Karamitros, D. K., G. D. Bouckovalas, and G. P. Kouretzis. 2007. “Stress analysis of buried steel pipelines at strike-slip fault crossings.” Soil Dyn. Earthquake Eng. 27 (3): 200–211. https://doi.org/10.1016/j.soildyn.2006.08.001.
Kecman, V. 2001. Learning and soft computing: Support vector machines, neural networks, and fuzzy logic models. Cambridge, MA: MIT Press.
Kutanaei, S., and A. J. Choobbasti. 2017. “Effects of nanosilica particles and randomly distributed fibers on the ultrasonic pulse velocity and mechanical properties of cemented sand.” J. Mater. Civ. Eng. 29 (3): 04016230. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001761.
Kutanaei, S. S., and A. J. Choobbasti. 2013. “Effect of the fluid weight on the liquefaction potential around a marine pipeline using CVFEM.” EJGE 18: 633–646.
Kutanaei, S. S., and A. J. Choobbasti. 2015a. “Mesh-free modeling of liquefaction around a pipeline under the influence of trench layer.” Acta Geotech. 10 (3): 343–355. https://doi.org/10.1007/s11440-015-0381-0.
Kutanaei, S. S., and A. J. Choobbasti. 2015b. “Prediction of combined effects of fibers and cement on the mechanical properties of sand using particle swarm optimization algorithm.” J. Adhes. Sci. Technol. 29 (6): 487–501. https://doi.org/10.1080/01694243.2014.995343.
Kutanaei, S. S., and A. J. Choobbasti. 2016a. “Experimental study of combined effects of fibers and nanosilica on mechanical properties of cemented sand.” J. Mater. Civ. Eng. 28 (6): 06016001. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001521.
Kutanaei, S. S., and A. J. Choobbasti. 2016b. “Triaxial behavior of fiber-reinforced cemented sand.” J. Adhes. Sci. Technol. 30 (6): 579–593. https://doi.org/10.1080/01694243.2015.1110073.
Kutanaei, S. S., E. Ghasemi, and M. Bayat. 2011. “Mesh-free modeling of two-dimensional heat conduction between eccentric circular cylinders.” Int. J. Phys. Sci. 6 (16): 4044–4052.
Kutanaei, S. S., N. Roshan, A. Vosoughi, S. Saghafi, A. Barari, and S. Soleimani. 2012. “Numerical solution of stokes flow in a circular cavity using mesh-free local RBF-DQ.” Eng. Anal. Bound. Elem. 36 (5): 633–638. https://doi.org/10.1016/j.enganabound.2011.11.009.
Maotian, L., Z. Xiaoling, Y. Qing, and G. Ying. 2009. “Numerical analysis of liquefaction of porous seabed around pipeline fixed in space under seismic loading.” Soil Dyn. Earthquake Eng. 29 (5): 855–864. https://doi.org/10.1016/j.soildyn.2008.09.002.
Mashhadban, H., A. Beitollahi, and S. S. Kutanaei. 2016a. “Identification of soil properties based on accelerometer records and comparison with other methods.” Arab. J. Geosci. 9 (6): 427–525. https://doi.org/10.1007/s12517-016-2452-4.
Mashhadban, H., S. S. Kutanaei, and M. A. Sayarinejad. 2016b. “Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network.” Constr. Build. Mater. 119: 277–287. https://doi.org/10.1016/j.conbuildmat.2016.05.034.
Matsui, K. 1981. “Pressure and stress distribution around a pipeline buried in a poro-elastic seabed.” Ph.D. dissertation, Dept. of Civil Engineering, Univ. of Houston.
Pakar, I., and M. Bayat. 2011. “Analytical solution for strongly nonlinear oscillation systems using energy balance method.” Int. J. Phys. Sci. 6 (22): 5166–5170.
Pakar, I., M. Bayat, and M. Bayat. 2014. “Accurate periodic solution for nonlinear vibration of thick circular sector slab.” Steel Compos. Struct. 16 (5): 521–531. https://doi.org/10.12989/scs.2014.16.5.521.
Rezaei, S., A. J. Choobbasti, and S. S. Kutanaei. 2015. “Site effect assessment using microtremor measurement, equivalent linear method, and artificial neural network (case study: Babol, Iran).” Arab. J. Geosci. 8 (3): 1453–1466. https://doi.org/10.1007/s12517-013-1201-1.
Sarokolayi, L. K., A. Beitollahi, G. R. Abdollahzadeh, S. T. R. Amreie, and S. S. Kutanaei. 2015. “Modeling of ground motion rotational components for near-fault and far-fault earthquake according to soil type.” Arab. J. Geosci. 8 (6): 3785–3797. https://doi.org/10.1007/s12517-014-1409-8.
Sarokolayi, L. K., S. S. Kutanaei, S. M. I. Golafshani, S. R. H. Haji, and H. Mashhadban. 2016. “Control-volume-based finite element modelling of liquefaction around a pipeline.” Geomat. Nat. Hazards Risk 7 (4): 1287–1306. https://doi.org/10.1080/19475705.2015.1060638.
Seed, H. B., P. P. Martin, and J. Lysmer. 1976. “Pore-water pressure changes during soil liquefaction.” J. Geotech. Eng. 102: 323–346.
Tavakoli, H., and S. S. Kutanaei. 2015. “Evaluation of effect of soil characteristics on the seismic amplification factor using the neural network and reliability concept.” Arab. J. Geosci. 8 (6): 3881–3891. https://doi.org/10.1007/s12517-014-1458-z.
Tavakoli, H. R., O. L. Omran, S. S. Kutanaei, and M. F. Shiade. 2014a. “Prediction of energy absorption capability in fiber reinforced self-compacting concrete containing nanosilica particles using artificial neural network.” Lat. Am. J. Solids Struct. 11 (6): 966–979. https://doi.org/10.1590/S1679-78252014000600004.
Tavakoli, H. R., O. L. Omran, M. F. Shiade, and S. S. Kutanaei. 2014b. “Prediction of combined effects of fibers and nano-silica on the mechanical properties of self-compacting concrete using artificial neural network.” Lat. Am. J. Solids Struct. 11 (11): 1906–1923. https://doi.org/10.1590/S1679-78252014001100002.
Trautmann, C. H., T. D. O’Rourke, and F. D. Kulhawy. 1985. “Uplift force-displacement response of buried pipe.” J. Geotech. Eng. 111 (9): 1061–1076. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:9(1061).
Zhiying, X. 1981. “An evaluation method of pore pressure during earthquake.” [In Chinese.] J. Hydraul. Eng. 4: 68–73.

Information & Authors

Information

Published In

Go to Journal of Pipeline Systems Engineering and Practice
Journal of Pipeline Systems Engineering and Practice
Volume 10Issue 2May 2019

History

Received: Jan 10, 2018
Accepted: Jun 5, 2018
Published online: Jan 4, 2019
Published in print: May 1, 2019
Discussion open until: Jun 4, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Saman Soleimani Kutanaei, Ph.D. [email protected]
Graduate Student, Dept. of Civil Engineering, Babol Univ. of Technology, Babol 47148-71167, Iran (corresponding author). Email: [email protected]
Asskar Janalizadeh Choobbasti
Professor, Dept. of Civil Engineering, Babol Univ. of Technology, Babol 47148-71167, Iran.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share