Technical Papers
Oct 26, 2022

Hazard Assessment and Modeling of Erosion and Sea Level Rise under Global Climate Change Conditions for Coastal City Management

Publication: Natural Hazards Review
Volume 24, Issue 1

Abstract

Sea-level rise in response to climate change and global warming severely impacts coastal cities through increased soil erosion and other hazards. Therefore, simulating threats in coastal locations is critical for coastal city management and planning. The Nonlinear Autoregressive Exogenous-Neural Network (NARX-NN) was used in conjunction with the Bruun model and GIS methods to estimate the rate of sea-level rise, develop a coastal erosion model and coastal hazards maps, and simulate a sea-level increase with a maximum speed of 79.26  mm/year, and an average of about 25.34  mm/year, with a 1.48  m/year average erosion rate simulated from 2013 to 2020 along Merang kechil to Kuala Marang in Terengganu state coastal areas. According to the Bruun model, the areas most vulnerable to shoreline erosion are Kuala Nerus, Pendagan Buluh, and Kuala Ibai. Batu Rakit (Reach 1) has the highest rate of coastal erosion, at 28.16%, compared to 16.5 percent in Kuala Nerus (Reach 2) and 19.1% in Pengadang Buluh (Reach 3). The findings of this study might be utilized to build new coastal hazard erosion maps in a GIS framework, which could then be used as part of Malaysia’s East Coast zone vulnerability assessment. The findings may also aid in the prioritization of conservation efforts in afflicted areas or the decision to adapt to the effects of coastal erosion. This article presents a methodological framework and an erosion management prioritization system to help coastal managers, planners, and developers identify hazardous zones and improve coastal management plans using geospatial models.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

Funding for this project has been provided by the Universiti Putra Malaysia (UPM) RUGS 4 with Project No. 03-04-11-1477RU and RUGS 6 with Project No. 03-01-12-1664RU. We acknowledge the government agencies of Peninsular Malaysia who helped with this project and the pilots who made this project possible. Data collection assistance was provided by Director Mr. Fahmi and Mr. Sharif from the Department of Survey and Mapping Malaysia (DSMM) and by JUPEM. We also like to thank NAHRIN and SMART for providing time. An acknowledgment also goes to the INOS. Higher Institution of Centre of Excellence (Vot 66928) for partially supporting the extension of this study.

References

Amores, A., et al. 2021. “Coastal flooding in the Maldives induced by mean sea-level rise and wind-waves: From global to local coastal modelling.” Front. Mar. Sci. 8 (Jun). https://doi.org/10.3389/fmars.2021.665672.
Arbain, S. H., and A. Wibowo. 2012. “Neural networks based nonlinear time series regression for water level forecasting of Dungun River.” J. Comput. Sci. 8 (9): 1506. https://doi.org/10.3844/jcssp.2012.1506.1513.
Ariffin, B., and E. Helmy. 2017. “Effect of monsoons on beach morphodynamics in the East Coast of Peninsular Malaysia: Examples from Kuala Terengganu coast.” Ph.D. dissertation, INOS, Universiti Malaysia Terengganu.
Ariffin, E. H., M. Sedrati, M. F. Akhir, R. Yaacob, and M. L. Husain. 2016. “Open sandy beach morphology and morphodynamic as response to seasonal monsoon in Kuala Terengganu, Malaysia.” J. Coastal Res. 75 (S1): 1032–1036. https://doi.org/10.2112/SI75-207.1.
Arshad, M. I. 2017. Photogrammetry section. Kuala Lumpur, Malaysia: Peninsular Topography Mapping Division, Dept. of Survey and Mapping Malaysia.
Athanasiou, P., A. van Dongeren, A. Giardino, M. I. Vousdoukas, R. Ranasinghe, and J. Kwadijk. 2020. “Uncertainties in projections of sandy beach erosion due to sea level rise: An analysis at the European scale.” Sci. Rep. 10 (1): 1–14. https://doi.org/10.1038/s41598-020-68576-0.
Athanasiou, P., A. Van Dongeren, A. Giardino, M. Vousdoukas, S. Gaytan-Aguilar, and R. Ranasinghe. 2019. “Global distribution of near-shore slopes with implications for coastal retreat.” Earth Syst. Sci. Data 11 (4): 1515–1529. https://doi.org/10.5194/essd-11-1515-2019.
Atkinson, A. L., T. E. Baldock, F. Birrien, D. P. Callaghan, P. Nielsen, T. Beuzen, I. L. Turner, C. E. Blenkinsopp, and R. Ranasinghe. 2018. “Laboratory investigation of the Bruun Rule and beach response to sea level rise.” Coastal Eng. 136 (Jun): 183–202. https://doi.org/10.1016/j.coastaleng.2018.03.003.
Awang, N. A., and M. R. A. Hamid. 2013. “Sea level rise in Malaysia. Sea level rise adaptation measures.” Hydrolink 2: 47–49.
Bagheri, M., Z. Z. Ibrahim, M. F. Akhir, B. Oryani, S. Rezania, I. D. Wolf, A. B. Pour, and W. I. Talaat. 2021a. “Impacts of future sea-level rise under global warming assessed from tide gauge records: A case study of the east coast economic region of Peninsular Malaysia.” Land 10 (12): 1382. https://doi.org/10.3390/land10121382.
Bagheri, M., Z. Z. Ibrahim, S. B. Mansor, L. Abd Manaf, N. Badarulzaman, and N. Vaghefi. 2019. “Shoreline change analysis and erosion prediction using historical data of Kuala Terengganu, Malaysia.” Environ. Earth Sci. 78 (15): 1–21. https://doi.org/10.1007/s12665-019-8459-x.
Bagheri, M., W. N. A. Sulaiman, and N. Vaghefi. 2013. “Application of geographic information system technique and analytical hierarchy process model for land-use suitability analysis on coastal area.” J. Coastal Conserv. 17 (1): 1–10. https://doi.org/10.1007/s11852-012-0213-4.
Bagheri, M., Z. Zaiton Ibrahim, M. F. Akhir, W. I. A. W. Talaat, B. Oryani, S. Rezania, I. D. Wolf, and A. B. Pour. 2021b. “Developing a climate change vulnerability index for coastal city sustainability, mitigation, and adaptation: A case study of Kuala Terengganu, Malaysia.” Land 10 (11): 1271. https://doi.org/10.3390/land10111271.
Bagheri, M., Z. Zaiton Ibrahim, S. Bin Mansor, L. Abd Manaf, N. Badarulzaman, and N. Vaghefi. 2019. “Shoreline change analysis and erosion prediction using historical data of Kuala Terengganu, Malaysia.” Environ. Earth Sci. 78 (15): 1–21. https://doi.org/10.1007/s12665-019-8459-x.
Bagheri, M., Z. Zaiton Ibrahim, S. Mansor, L. Abd Manaf, M. F. Akhir, W. I. A. W. Talaat, and A. Beiranvand Pour. 2021c. “Application of multi-criteria decision-making model and expert choice software for coastal city vulnerability evaluation.” Urban Sci. 5 (4): 84. https://doi.org/10.3390/urbansci5040084.
Bagheri, M., Z. Zaiton Ibrahim, S. Mansor, L. A. Manaf, M. F. Akhir, W. I. A. W. Talaat, and A. Beiranvand Pour. 2021d. “Land-use suitability assessment using Delphi and analytical hierarchy process (D-AHP) hybrid model for coastal city management: Kuala Terengganu, Peninsular Malaysia.” ISPRS Int. J. Geo-Inf. 10 (9): 621. https://doi.org/10.3390/ijgi10090621.
Bagtasa, G., M. G. Cayetano, and C. S. Yuan. 2018. “Seasonal variation and chemical characterization of PM 2.5 in northwestern Philippines.” Atmos. Chem. Phys. 18 (7): 4965–4980. https://doi.org/10.5194/acp-18-4965-2018.
Barnsley, M. J. 2007. Environmental modeling: A practical introduction. London: CRC Press.
Begum, R. A., R. D. Abidin, and J. J. Pereira. 2011. “Initiatives and market mechanisms for climate change actions in Malaysia.” J. Environ. Sci. Technol. 4 (1): 31–40. https://doi.org/10.3923/jest.2011.31.40.
Bhuiyan, M. A. H., and C. Siwar. 2011. Tourism for economic development in east coast economic region (ECER), Malaysia. Bangi, Malaysia. Institute for Enviroment and Development, Univ. Kebangsaan Malaysia.
Bruun, P. 1954. Coast erosion and the development of beach profiles. Washington, DC: USACE.
Bruun, P. 1962. “Sea level rise as a cause of shore erosion.” J. Waterways Harbors Div. 88 (1): 117–130. https://doi.org/10.1061/JWHEAU.0000252.
Casal, G., and S. Lavender. 2017. “Spatio-temporal variability of sea surface temperature in Irish waters (1982-2015) using AVHRR sensor.” J. Sea Res. 129 (Nov): 89–104. https://doi.org/10.1016/j.seares.2017.07.006.
Chegini, H. G., and G. Zarepour. 2022. “Numerical study of rectangular tank with sloshing fluid and simulation of the model using a machine learning method.” Geofluids 2022 (Apr): 4121956. https://doi.org/10.1155/2022/4121956.
Chiu, C. C., K. T. Lee, H. H. Lee, J. J. Wang, D. P. Sun, C. C. Huang, and H. Y. Shi. 2018. “Comparison of models for predicting quality of life after surgical resection of hepatocellular carcinoma: A prospective study.” J. Gastrointestinal Surg. 22 (10): 1724–1731. https://doi.org/10.1007/s11605-018-3833-7.
Cooper, J. A. G., and O. H. Pilkey. 2004. “Sea-level rise and shoreline retreat: Time to abandon the Bruun Rule.” Global Planet. Change 43 (3): 157–171. https://doi.org/10.1016/j.gloplacha.2004.07.001.
Crowell, M., B. C. Douglas, and S. P. Leatherman. 1997. “On forecasting future U.S. shoreline positions: A test of algorithms.” J. Coastal Res. 13 (4): 1245–1255.
Crowell, M., and S. P. Leatherman. 1999. “Coastal erosion mapping and management.” J. Coastal Res. 28 (Jan): 196.
Crowell, M., S. P. Leatherman, and M. K. Buckley. 1991. “Historical shoreline change: Error analysis and mapping accuracy.” J. Coastal Res. 7 (3): 839–852.
Dahri, N., R. Yousfi, A. Bouamrane, H. Abida, Q. B. Pham, and O. Derdous. 2022. “Comparison of analytic network process and artificial neural network models for flash flood susceptibility assessment.” J. Afr. Earth Sci. 193 (Sep): 104576. https://doi.org/10.1016/j.jafrearsci.2022.104576.
D’Anna, M., D. Idier, B. Castelle, S. Vitousek, and G. Le Cozannet. 2021. “Reinterpreting the Bruun rule in the context of equilibrium shoreline models.” J. Mar. Sci. Eng. 9 (9): 974. https://doi.org/10.3390/jmse9090974.
Das, B., B. Nair, V. K. Reddy, and P. Venkatesh. 2018. “Evaluation of multiple linear, neural network and penalised regression models for prediction of rice yield based on weather parameters for west coast of India.” Int. J. Biometeorol. 62 (10): 1809–1822. https://doi.org/10.1007/s00484-018-1583-6.
da Silva, G. V., D. Strauss, T. Murray, R. Tomlinson, J. Taylor, and P. Prenzler. 2021. “Building coastal resilience via sand backpassing: A framework for developing a decision support tool for sand management.” Ocean Coastal Manage. 213 (Nov): 105887. https://doi.org/10.1016/j.ocecoaman.2021.105887.
Davidson-Arnott, R. G., and B. O. Bauer. 2021. “Controls on the geomorphic response of beach-dune systems to water level rise.” J. Great Lakes Res. 47 (6): 1594–1612. https://doi.org/10.1016/j.jglr.2021.05.006.
Dedekorkut-Howes, A., E. Torabi, and M. Howes. 2021. “Planning for a different kind of sea change: Lessons from Australia for sea level rise and coastal flooding.” Clim. Policy 21 (2): 152–170. https://doi.org/10.1080/14693062.2020.1819766.
De Longueville, F., Y. C. Hountondji, L. Assogba, S. Henry, and P. Ozer. 2020. “Perceptions of and responses to coastal erosion risks: The case of Cotonou in Benin.” Int. J. Disaster Risk Reduct. 51 (Dec): 101882. https://doi.org/10.1016/j.ijdrr.2020.101882.
Diaconescu, E. 2008. “The use of NARX neural networks to predict chaotic time series.” WSEAS Trans. Comput. Res. 3 (3): 182–191.
Ding, Y., C. Mu, T. Wu, G. Hu, D. Zou, D. Wang, and X. Wu. 2021. “Increasing cryospheric hazards in a warming climate.” Earth Sci. Rev. 213 (Feb): 103500. https://doi.org/10.1016/j.earscirev.2020.103500.
Di Nunno, F., F. Granata, R. Gargano, and G. de Marinis. 2021. “Forecasting of extreme storm tide events using NARX neural network-based models.” Atmosphere 12 (4): 512. https://doi.org/10.3390/atmos12040512.
Dubois, R. N. 1992. “A re-evaluation of Bruun’s rule and supporting evidence.” J. Coastal Res. 8 (3): 618–628.
EPU (Economic Planning Unit). 1985. National coastal erosion study, final report. Kuala Lumpur, Malaysia: Unit Perancang Ekonomi, Jabatan Perdana Menteri.
Garcin, M., A. Baills, G. Le Cozannet, T. Bulteau, A. L. Auboin, and J. Sauter. 2013. “Pluri-decadal impact of mining activities on coastline mobility of estuaries of New Caledonia (South Pacific).” J. Coastal Res. 65 (S1): 494–499. https://doi.org/10.2112/SI65-084.1.
Ghamarnia, H., and Z. Jalili. 2015. “Artificial network for predicting water uptake under shallow saline ground water conditions.” J. Sci. Res. Rep. 7 (5): 359–372. https://doi.org/10.9734/JSRR/2015/17871.
Ghorbanzadeh, O., K. Valizadeh Kamran, T. Blaschke, J. Aryal, A. Naboureh, J. Einali, and J. Bian. 2019. “Spatial prediction of wildfire susceptibility using field survey GPS data and machine learning approaches.” Fire 2 (3): 43. https://doi.org/10.3390/fire2030043.
Goldstein, E. B., G. Coco, and N. G. Plant. 2019. “A review of machine learning applications to coastal sediment transport and morphodynamics.” Earth Sci. Rev. 194 (Jul): 97–108. https://doi.org/10.1016/j.earscirev.2019.04.022.
Haghiabi, A. H., A. H. Nasrolahi, and A. Parsaie. 2018. “Water quality prediction using machine learning methods.” Water Qual. Res. J. 53 (1): 3–13. https://doi.org/10.2166/wqrj.2018.025.
Hands, E. B. 2018. “The Great Lakes as a test model for profile responses to sea level changes.” In CRC handbook of coastal processes and erosion, 167–190. Boca Raton, FL: CRC Press.
Hooshyaripor, F., S. Faraji-Ashkavar, F. Koohyian, Q. Tang, and R. Noori. 2019. “Evaluation of the probable annual flood damage influenced by El-Niño in the Kan River Basin, Iran.” Nat. Hazards Earth Syst. Sci. Discuss. 2019: 2739–2751.
Huang, S., V. Krysanova, and F. Hattermann. 2015. “Projections of climate change impacts on floods and droughts in Germany using an ensemble of climate change scenarios.” Reg. Environ. Change 15 (3): 461–473. https://doi.org/10.1007/s10113-014-0606-z.
Hurlimann, A., J. Barnett, R. Fincher, N. Osbaldiston, C. Mortreux, and S. Graham. 2014. “Urban planning and sustainable adaptation to sea-level rise.” Landscape Urban Plann. 126 (Jun): 84–93. https://doi.org/10.1016/j.landurbplan.2013.12.013.
INC (Initial National Communication). 2000. Malaysia initial national communication. Seri Kembangan: Kementerian Sains, Teknologi dan Alam Sekitar.
Jaharudin, P., M. D. Kamarul, T. J. Abu, M. Haslina, and R. Pravinassh. 2019. “Impact of coastal erosion on local community: Lifestyle and identity.” Disaster Adv. 12 (2): 19–27.
Javadinejad, S., R. Dara, and F. Jafary. 2021. “Analysis and prioritization the effective factors on increasing farmers resilience under climate change and drought.” Agric. Res. 10 (3): 497–513. https://doi.org/10.1007/s40003-020-00516-w.
Jayanthi, M., S. Thirumurthy, M. Samynathan, M. Duraisamy, M. Muralidhar, J. Ashokkumar, and K. K. Vijayan. 2018. “Shoreline change and potential sea level rise impacts in a climate hazardous location in southeast coast of India.” Environ. Monit. Assess. 190 (1): 1–14. https://doi.org/10.1007/s10661-017-6426-0.
Kask, A., T. Soomere, T. Healy, and N. Delpeche. 2009. “Rapid estimate of sediment loss for ‘Almost equilibrium’ beaches.” J. Coastal Res. 2 (56): 971–975.
Khamis, A., and S. N. S. B. Abdullah. 2014. “Forecasting wheat price using backpropagation and NARX neural network.” Int. J. Eng. Sci. 3 (11): 19–26.
Kwan, M. S., F. T. Tangang, and L. Juneng. 2014. “Present-day regional climate simulation over Malaysia and western Maritime Continent region using PRECIS forced with ERA40 reanalysis.” Theor. Appl. Climatol. 115 (1–2): 1–14. https://doi.org/10.1007/s00704-013-0873-5.
Leatherman, S. P. 1990. “Modelling shore response to sea-level rise on sedimentary coasts.” Prog. Phys. Geogr. 14 (4): 447–464. https://doi.org/10.1177/030913339001400402.
Le Cozannet, G., M. Garcin, M. Yates, D. Idier, and B. Meyssignac. 2014. “Approaches to evaluate the recent impacts of sea-level rise on shoreline changes.” Earth Sci. Rev. 138 (Nov): 47–60. https://doi.org/10.1016/j.earscirev.2014.08.005.
Li, X., Y. Zong, Z. Zheng, G. Huang, and H. Xiong. 2017. “Marine deposition and sea surface temperature changes during the last and present interglacials in the west coast of Taiwan Strait.” Quat. Int. 440 (Part A): 91e101. https://doi.org/10.1016/j.quaint.2016.05.023.
Lin, Q., J. Leandro, W. Wu, P. Bhola, and M. Disse. 2020. “Prediction of maximum flood inundation extents with resilient backpropagation neural network: Case study of Kulmbach.” Front. Earth Sci. 8 (Aug): 332. https://doi.org/10.3389/feart.2020.00332.
List, J. H., A. H. Sallenger, M. E. Hansen, and B. E. Jaffe. 1997. “Accelerated relative sea-level rise and rapid coastal erosion: Testing a causal relationship for the Louisiana barrier islands.” Mar. Geol. 140 (3): 347–365. https://doi.org/10.1016/S0025-3227(97)00035-2.
Maiti, S., and A. K. Bhattacharya. 2009. “Shoreline change analysis and its application to prediction: A remote sensing and statistics-based approach.” J. Mar. Geol. 257 (1–4): 11–23. https://doi.org/10.1016/j.margeo.2008.10.006.
Malinova, T., and Z. X. Guo. 2004. “Artificial neural network modelling of hydrogen storage properties of Mg-based alloys.” Mater. Sci. Eng., A 365 (1): 219–227. https://doi.org/10.1016/j.msea.2003.09.031.
Mann, T., T. Bayliss-Smith, and H. Westphal. 2016. “A geomorphic interpretation of shoreline change rates on reef islands.” J. Coastal Res. 319 (3): 500–507. https://doi.org/10.2112/JCOASTRES-D-15-00093.1.
Maryam, D. S., A. Weliyadi, and T. Aung. 2011. “Method to estimate the land loss from sea level rise due to gradual warming in Kota Kinabalu, Sabah.” J. Borneo Sci. 28 (Mar): 18–28.
Mather, A. A., and D. D. Stretch. 2012. “A perspective on sea level rise and coastal storm surge from Southern and Eastern Africa: A case study near Durban, South Africa.” Water 4 (1): 237–259. https://doi.org/10.3390/w4010237.
Merritt, W., B. Croke, K. Saifuk, and A. Scott. 2005. Vol. 118 of Estimating the effects of changed land use and management on soil loss. ACIAR monograph series, 141–156. Canberra, Australia: Microdata Pty Ltd.
Mohd, F. A., K. N. A. Maulud, R. A. Begum, S. N. Selamat, and O. A. Karim. 2018. “Impact of shoreline changes to Pahang coastal area by using geospatial technology.” Sains Malaysiana 47 (5): 991–997. https://doi.org/10.17576/jsm-2018-4705-14.
Mucova, S. A. R., U. M. Azeiteiro, W. L. Filho, C. L. Lopes, J. M. Dias, and M. J. Pereira. 2021. “Approaching sea-level rise (S.L.R.) change: Strengthening local responses to sea-level rise and coping with climate change in Northern Mozambique.” J. Mar. Sci. Eng. 9 (2): 205. https://doi.org/10.3390/jmse9020205.
NAHRIM (National Hydraulic Research Institute Malaysia). 2019. “The study of the impact of climate change on sea level rise in Malaysia.” In Overview, studies and reports vulnerability & adaptation, adaptation measures, conclusion & way forward. Kuala Lumpur, Malaysia: Coastal & Oceanography Research Centre.
Najafzadeh, M., F. Homaei, and H. Farhadi. 2021. “Reliability assessment of water quality index based on guidelines of national sanitation foundation in natural streams: Integration of remote sensing and data-driven models.” Artif. Intell. Rev. 54 (6): 4619–4651. https://doi.org/10.1007/s10462-021-10007-1.
Najafzadeh, M., and A. Zahiri. 2015. “Neuro-fuzzy GMDH-based evolutionary algorithms to predict flow discharge in straight compound channels.” J. Hydrol. Eng. 20 (12): 04015035. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001185.
Noori, R., M. R. Abbasi, J. F. Adamowski, and M. Dehghani. 2017. “A simple mathematical model to predict sea surface temperature over the northwest Indian Ocean.” Estuarine Coastal Shelf Sci. 197 (Oct): 236–243. https://doi.org/10.1016/j.ecss.2017.08.022.
Olsen, W. S., S. A. de Figueiredo, and L. J. Calliari. 2022. “Geomorphological controls on the coastal response under projected sea level rise: A case study at an oceanic island (Trindade, Brazil).” J. South Am. Earth Sci. 116 (Jun): 103837. https://doi.org/10.1016/j.jsames.2022.103837.
Pachauri, R. K., L. Meyer, G. K. Plattner, and T. Stocker. 2014. IPCC climate change 2014: Synthesis report. Geneva, Switzerland: Intergovernmental Panel on Climate Change.
Polo, F. A. O., J. F. Bermejo, J. F. G. Fernández, and A. C. Márquez. 2015. “Failure mode prediction and energy forecasting of P.V. plants to assist dynamic maintenance tasks by ANN based models.” Renewable Energy 81 (Sep): 227–238. https://doi.org/10.1016/j.renene.2015.03.023.
Rajaee, T., S. Khani, and M. Ravansalar. 2020. “Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review.” Chemometr. Intell. Lab. Syst. 200 (May): 103978. https://doi.org/10.1016/j.chemolab.2020.103978.
Ranasinghe, R., P. Watson, D. Lord, D. Hanslow, and P. Cowell. 2007. “Sea level rise, coastal recession, and the Bruun rule.” In Proc., Coasts and Ports ’07: On CD Rom Produced by Engineers Australia. Melbourne, VIC, Australia: Univ. of Sydney.
Robel, A. A., H. Seroussi, and G. H. Roe. 2019. “Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise.” Proc. Natl. Acad. Sci. U.S.A. 116 (30): 14887–14892. https://doi.org/10.1073/pnas.1904822116.
Rosati, J. D., R. G. Dean, and T. L. Walton. 2013. “The modified Bruun Rule extended for landward transport.” Mar. Geol. 340 (Jun): 71–81. https://doi.org/10.1016/j.margeo.2013.04.018.
Saikia, P., R. D. Baruah, S. K. Singh, and P. K. Chaudhuri. 2020. “Artificial neural networks in the domain of reservoir characterization: A review from shallow to deep models.” Comput. Geosci. 135 (Feb): 104357. https://doi.org/10.1016/j.cageo.2019.104357.
Sankaranarayanan, S., M. Prabhakar, S. Satish, P. Jain, A. Ramprasad, and A. Krishnan. 2020. “Flood prediction based on weather parameters using deep learning.” J. Water Clim. Change 11 (4): 1766–1783. https://doi.org/10.2166/wcc.2019.321.
Shamshirband, S., E. Jafari Nodoushan, J. E. Adolf, A. Abdul Manaf, A. Mosavi, and K. W. Chau. 2019. “Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters.” Eng. Appl. Comput. Fluid Mech. 13 (1): 91–101. https://doi.org/10.1080/19942060.2018.1553742.
Shao, Y., J. Zhao, J. Xu, A. Fu, and M. Li. 2022. “Application of rainfall-runoff simulation based on the NARX dynamic neural network model.” Water 14 (13): 2082. https://doi.org/10.3390/w14132082.
Shehab, M., L. Abualigah, Q. Shambour, M. A. Abu-Hashem, M. K. Y. Shambour, A. I. Alsalibi, and A. H. Gandomi. 2022. “Machine learning in medical applications: A review of state-of-the-art methods.” Comput. Biol. Med. 145 (Jun): 105458. https://doi.org/10.1016/j.compbiomed.2022.105458.
Shiri, J., O. Kisi, H. Yoon, M. H. Kazemi, N. Shiri, M. Poorrajabali, and S. Karimi. 2022. “Prediction of groundwater level variations in coastal aquifers with tide and rainfall effects using heuristic data driven models.” Supplement, ISH J. Hydraul. Eng. 28 (S1): 188–198. https://doi.org/10.1080/09715010.2020.1729876.
Sreenivasan, G., and C. S. Jha. 2022. “Geospatial technology for geomorphology mapping and its applications.” In Geospatial technologies for resources planning and management, 1–47. Cham, Switzerland: Springer.
Suhaila, J., and Z. Yusop. 2018. “Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia.” Meteorol. Atmos. Phys. 130 (5): 565–581. https://doi.org/10.1007/s00703-017-0537-6.
Tabbussum, R., and A. Q. Dar. 2020. “Comparative analysis of neural network training algorithms for the flood forecast modelling of an alluvial Himalayan River.” J. Flood Risk Manage. 13 (4): e12656. https://doi.org/10.1111/jfr3.12656.
Tezel, G., and M. Buyukyildiz. 2016. “Monthly evaporation forecasting using artificial neural networks and support vector machines.” Theor. Appl. Climatol. 124 (1–2): 69–80. https://doi.org/10.1007/s00704-015-1392-3.
Thieler, E. R., O. H. Pilkey Jr., R. S. Young, D. M. Bush, and F. Chai. 2000. “The use of the mathematical models to predict beach behavior for U.S. coastal engineering: A critical review.” J. Coastal Res. 16 (1): 48–70.
Tran, Y. H., and E. Barthélemy. 2020. “Combined longshore and cross-shore shoreline model for closed embayed beaches.” Coastal Eng. 158 (Jun): 103692. https://doi.org/10.1016/j.coastaleng.2020.103692.
Verwaest, T., A. Dujardin, A. L. Montreuil, and K. Trouw. 2022. “Understanding coastal resilience of the Belgian West Coast.” Water 14 (13): 2104. https://doi.org/10.3390/w14132104.
Ware, D., A. Buckwell, R. Tomlinson, K. Foxwell-Norton, and N. Lazarow. 2020. “Using historical responses to shoreline change on Australia’s Gold Coast to estimate costs of coastal adaptation to sea level rise.” J. Mar. Sci. Eng. 8 (6): 380. https://doi.org/10.3390/jmse8060380.
Xu, Y., C. Hu, Q. Wu, S. Jian, Z. Li, Y. Chen, G. Zhang, Z. Zhang, and S. Wang. 2022. “Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation.” J. Hydrol. 608 (May): 127553. https://doi.org/10.1016/j.jhydrol.2022.127553.
Zhai, A., G. Fan, X. Ding, and G. Huang. 2022. “Regression tree ensemble rainfall–runoff forecasting model and its application to Xiangxi River, China.” Water 14 (3): 463. https://doi.org/10.3390/w14030463.
Zhao, L., F. E. Hicks, and A. R. Fayek. 2012. “Applicability of multi-layer feed-forward neural networks to model the onset of river breakup.” Cold Reg. Sci. Technol. 70 (Jan): 32–42. https://doi.org/10.1016/j.coldregions.2011.08.011.
Zhihua, L. V., J. Zuo, and D. Rodriguez. 2020. “Predicting of runoff using an optimized SWAT-ANN: A case study.” J. Hydrol.: Reg. Stud. 29 (Jun): 100688. https://doi.org/10.1016/j.ejrh.2020.100688.
Zhou, Y. 2022. “Layout optimization of urban cultural space construction based on forward three-layer neural network model.” Comput. Intell. Neurosci. 2022: 12. https://doi.org/10.1155/2022/6558512.
Zime, S. 2014. “Africa economic growth forecasting research based on artificial neural network model: Case study of Benin.” Univ. Electron. Sci. Technol. China 3 (11): 153305186.
Zubaidi, S. L., I. H. Abdulkareem, K. S. Hashim, H. Al-Bugharbee, H. M. Ridha, S. K. Gharghan, F. F. Al-Qaim, M. Muradov, P. Kot, and R. Al-Khaddar. 2020a. “Hybridised artificial neural network model with slime Mould algorithm: A novel methodology for prediction of urban stochastic water demand.” Water 12 (10): 2692. https://doi.org/10.3390/w12102692.
Zubaidi, S. L., H. Al-Bugharbee, S. Ortega-Martorell, S. K. Gharghan, I. Olier, K. S. Hashim, N. S. S. Al-Bdairi, and P. Kot. 2020b. “A novel methodology for prediction urban water demand by wavelet denoising and adaptive neuro-fuzzy inference system approach.” Water 12 (6): 1628. https://doi.org/10.3390/w12061628.
Zubaidi, S. L., S. Ortega-Martorell, H. Al-Bugharbee, I. Olier, K. S. Hashim, S. K. Gharghan, P. Kot, and R. Al-Khaddar. 2020c. “Urban water demand prediction for a city that suffers from climate change and population growth: Gauteng province case study.” Water 12 (7): 1885. https://doi.org/10.3390/w12071885.

Information & Authors

Information

Published In

Go to Natural Hazards Review
Natural Hazards Review
Volume 24Issue 1February 2023

History

Received: Jun 18, 2021
Accepted: Jul 5, 2022
Published online: Oct 26, 2022
Published in print: Feb 1, 2023
Discussion open until: Mar 26, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Milad Bagheri, Ph.D. [email protected]
Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Terengganu 21030, Malaysia (corresponding author). Email: [email protected]
Zelina Z. Ibrahim, Ph.D.
Associate Professor, Dept. of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Seri Kembangan 43400, Malaysia.
Shattri Mansor, Ph.D.
Professor, Dept. of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Seri Kembangan 43400, Malaysia.
Latifah Abd Manaf, Ph.D.
Associate Professor, Dept. of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Seri Kembangan 43400, Malaysia.
M. F. Akhir
Associate Professor, Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Terengganu 21030, Malaysia.
W. I. A. W. Talaat
Professor, Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT), Kuala Terengganu 21030, Malaysia.
Isabelle D. Wolf, Ph.D.
Associate Professor, School of Geography and Sustainable Communities, Univ. of Wollongong, Northfields Ave., Wollongong, NSW 2522, Australia; Centre for Ecosystem Science, Univ. of New South Wales, Sydney, NSW 2052, Australia.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share