Technical Papers
Feb 21, 2023

Creep Fracture Complexions

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 5

Abstract

Fracture is generally the separation of an object into different pieces under the application of external stress. The fracture surface embosses the imprint of the complete deformation process subjected to a material. Hence, it is plausible to correlate fracture features and respective deformation history of a material. Two-dimensional ductile fracture complexions are quantitatively measured on the published creep-ruptured fractographs of a ferritic steel with different product dimensions at various stresses and temperatures. Intercept length measurements were performed to measure the dimple geometry on the published electron fractographs. Irrespective of test parameters and product dimensions, the fracture surface appearance persisted to be ductile transgranular in nature, which has been quantitatively analyzed by the statistical distribution of diverse-sized dimples on the fractographs. The distribution of dimple size quantified from the crept fractographs as a function of temperature and stress were monitored to estimate the nature of disparity in creep responses of the steel. It has been investigated that with the increase of the Larson-Miller parameter, the average dimple size increases as the corresponding applied stress decreases. Finally, this research brings to the fore that from the quantification of systematic crept fractographs, it is possible to reasonably deduce the creep properties/life of a ferritic steel, when the material microstructure is known.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The data consist of experimental and analytical output that has been plotted in the figures in the manuscript. The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

Abe, F., T. U. Kern, and R. Viswanathan, eds. 2008. Creep-resistant steels. Amsterdam, Netherlands: Elsevier.
Argon, A. S. 1983. “Intergranular cavitation in creeping alloys.” Scr. Metall. 17 (1): 5–12. https://doi.org/10.1016/0036-9748(83)90061-3.
Argon, A. S., J. Im, and R. Safoglu. 1975. “Cavity formation from inclusions in ductile fracture.” Metall. Trans. A 6 (4): 825–837. https://doi.org/10.1007/BF02672306.
Arndt, J., H. Majedi, and W. Dahl. 1996. “Influence of strain history on ductile failure of steel.” J. Phys. IV 6 (C6): C6-23–C6-32. https://doi.org/10.1051/jp4:1996603.
Ashby, M. F., and B. F. Dyson. 1984. “Creep damage mechanics and micromechanisms.” In Proc., Fracture (IJF6) 84, 3–30. Amsterdam, Netherlands: Elsevier.
Beachem, C. D., and G. R. Yoder. 1973. “Elastic-plastic fracture by homogeneous microvoid coalescence tearing along alternating shear planes.” Metall. Trans. 4 (4): 1145–1153. https://doi.org/10.1007/BF02645619.
Beere, W., and M. V. Speight. 1978. “Creep cavitation by vacancy diffusion in plastically deforming solid.” Met. Sci. 12 (4): 172–176. https://doi.org/10.1179/msc.1978.12.4.172.
Benac, D. J. 2009. “Failure avoidance brief: Estimating heater tube life.” J. Fail. Anal. Prev. 9 (1): 5–7. https://doi.org/10.1007/s11668-008-9190-1.
Benson, D. J. 1993. “An analysis of void distribution effects on the dynamic growth and coalescence of voids in ductile metals.” J. Mech. Phys. Solids 41 (8): 1285–1308. https://doi.org/10.1016/0022-5096(93)90080-Y.
Benzerga, A. A., J. Besson, and A. Pineau. 2004. “Anisotropic ductile fracture: Part I: Experiments.” Acta Mater. 52 (15): 4623–4638. https://doi.org/10.1016/j.actamat.2004.06.020.
Broek, D. 1973. “The role of inclusions in ductile fracture and fracture toughness.” Eng. Fract. Mech. 5 (1): 55–66. https://doi.org/10.1016/0013-7944(73)90007-6.
Broyles, S. E., K. R. Anderson, J. R. Groza, and J. C. Gibeling. 1996. “Creep deformation of dispersion-strengthened copper.” Metall. Mater. Trans. A 27 (5): 1217–1227. https://doi.org/10.1007/BF02649859.
Cane, B. J. 1981. “Mechanistic control regimes for intergranular cavity growth in 2.25 Cr-1Mo steel under various stresses and stress states.” Met. Sci. 15 (7): 302–310. https://doi.org/10.1179/030634581790426796.
Chen, I. W. 1983. “Mechanisms of cavity growth in creep.” Scr. Metall. 17 (1): 17–22. https://doi.org/10.1016/0036-9748(83)90063-7.
Cho, H. C., J. Yu, and I. S. Park. 1992. “Creep cavitation in a NiCr steel.” Metall. Trans. A 23 (1): 201–210. https://doi.org/10.1007/BF02660865.
Choudhary, B. K. 2013. “Tertiary creep behaviour of 9Cr–1Mo ferritic steel.” Mater. Sci. Eng., A 585 (Nov): 1–9. https://doi.org/10.1016/j.msea.2013.07.026.
Choudhary, B. K., E. Isaac Samuel, J. Christopher, and S. D. Yadav. 2019. “Comparative evaluation of creep-rupture behavior of P9 steel plate and thick section tubeplate forging.” J. Mater. Eng. Perform. 28 (10): 6307–6319. https://doi.org/10.1007/s11665-019-04346-y.
Choudhary, B. K., S. Saroja, K. B. Sankara Rao, and S. L. Mannan. 1999. “Creep-rupture behavior of forged, thick section 9Cr-1Mo ferritic steel.” Metall. Mater. Trans. A 30 (11): 2825–2834. https://doi.org/10.1007/s11661-999-0120-y.
Chuang, T. J., K. I. Kagawa, J. R. Rice, and L. B. Sills. 1979. “Overview no. 2: Non-equilibrium models for diffusive cavitation of grain interfaces.” Acta Metall. 27 (3): 265–284. https://doi.org/10.1016/0001-6160(79)90021-X.
Cocks, A. C. F., and M. F. Ashby. 1980. “Intergranular fracture during power-law creep under multiaxial stresses.” Met. Sci. 14 (8–9): 395–402. https://doi.org/10.1179/030634580790441187.
Cocks, A. C. F., and M. F. Ashby. 1982a. “Creep fracture by coupled power-law creep and diffusion under multiaxial stress.” Met. Sci. 16 (10): 465–474. https://doi.org/10.1179/msc.1982.16.10.465.
Cocks, A. C. F., and M. F. Ashby. 1982b. “The growth of a dominant crack in a creeping material.” Scr. Metall. 16 (1): 109–114. https://doi.org/10.1016/0036-9748(82)90413-6.
Cocks, A. C. F., and M. F. Ashby. 1982c. “On creep fracture by void growth.” Prog. Mater. Sci. 27 (3–4): 189–244. https://doi.org/10.1016/0079-6425(82)90001-9.
Colangelo, V. J., and F. A. Heiser. 1987. Analysis of metallurgical failures. 2nd ed., 368. New York: Wiley.
Das, A. 2017. “Fracture complexity of pressure vessel steels.” Philos. Mag. 97 (33): 3084–3141. https://doi.org/10.1080/14786435.2017.1367857.
Das, A. 2018. “Effect of stress state on fracture features.” Metall. Mater. Trans. A 49 (5): 1425–1432. https://doi.org/10.1007/s11661-018-4516-4.
Das, A. 2021. “Stress/strain induced void?” Arch. Comput. Methods Eng. 28 (3): 1795–1852. https://doi.org/10.1007/s11831-020-09444-y.
Das, A., and J. K. Chakravartty. 2017. “Fractographic correlations with mechanical properties in ferritic martensitic steels.” Surf. Topogr. Metrol. Prop. 5 (4): 045006. https://doi.org/10.1088/2051-672X/aa7931.
Das, A., and P. Poddar. 2013. “Structure–wear-property correlation.” Mater. Des. 47 (May): 557–565. https://doi.org/10.1016/j.matdes.2012.12.041.
Das, A., N. Roy, and A. K. Ray. 2014. “Stress induced creep cavity.” Mater. Sci. Eng., A 598 (Mar): 28–33. https://doi.org/10.1016/j.msea.2013.12.097.
Das, A., and S. Tarafder. 2009. “Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel.” Int. J. Plast. 25 (11): 2222–2247. https://doi.org/10.1016/j.ijplas.2009.03.003.
Dieter, G. E. 1988. Mechanical metallurgy. New York: McGraw-Hill.
Edward, G., and M. F. Ashby. 1979. “Intergranular fracture during power-law creep.” Acta Metall. 27 (9): 1505–1518. https://doi.org/10.1016/0001-6160(79)90173-1.
Garrison, W. M., Jr., and N. R. Moody. 1987. “Ductile fracture.” J. Phys. Chem. Solids 48 (11): 1035–1074. https://doi.org/10.1016/0022-3697(87)90118-1.
Goods, S. H., and L. M. Brown. 1983. “The nucleation of cavities by plastic deformation.” In Perspectives in creep fracture, 71–85. Amsterdam, Netherlands: Elsevier.
Goods, S. H., and W. D. Nix. 1978a. “The coalescence of large grain boundary cavities in silver during tension creep.” Acta Metall. 26 (5): 753–758. https://doi.org/10.1016/0001-6160(78)90025-1.
Goods, S. H., and W. D. Nix. 1978b. “The kinetics of cavity growth and creep fracture in silver containing implanted grain boundary cavities.” Acta Metall. 26 (5): 739–752. https://doi.org/10.1016/0001-6160(78)90024-X.
Hald, J. 2004. “Creep strength and ductility of 9 to 12% chromium steels.” Mater. High Temp. 21 (1): 41–46. https://doi.org/10.1179/mht.2004.006.
Hanna, M. D., and G. W. Greenwood. 1982. “Cavity growth and creep in copper at low stresses.” Acta Metall. 30 (3): 719–724. https://doi.org/10.1016/0001-6160(82)90121-3.
He, J., Z. Cui, F. Chen, Y. Xiao, and L. Ruan. 2013. “The new ductile fracture criterion for 30Cr2Ni4MoV ultra-super-critical rotor steel at elevated temperatures.” Mater. Des. 52 (Dec): 547–555. https://doi.org/10.1016/j.matdes.2013.05.080.
Hippsley, C. A., and N. P. Haworth. 1988. “Hydrogen and temper embrittlement in 9Cr–1Mo steel.” Mater. Sci. Technol. 4 (9): 791–802. https://doi.org/10.1179/mst.1988.4.9.791.
Hull, D., and D. E. Rimmer. 1959. “The growth of grain-boundary voids under stress.” Philos. Mag. 4 (42): 673–687. https://doi.org/10.1080/14786435908243264.
Ilman, M. N. 2014. “Analysis of material degradation and life assessment of 25Cr–38Ni–Mo–Ti wrought alloy steel (HPM) for cracking tubes in an ethylene plant.” Eng. Fail. Anal. 42 (Jul): 100–108. https://doi.org/10.1016/j.engfailanal.2014.03.020.
Kaftelen, H., and A. Baldan. 2004. “Comparative creep damage assessments using the various models.” J. Mater. Sci. 39 (13): 4199–4210. https://doi.org/10.1023/B:JMSC.0000033400.28964.7b.
Kassner, M. E., and T. A. Hayes. 2003. “Creep cavitation in metals.” Int. J. Plast. 19 (10): 1715–1748. https://doi.org/10.1016/S0749-6419(02)00111-0.
Konovalenko, I., P. Maruschak, J. Brezinová, and J. Brezina. 2019. “Morphological characteristics of dimples of ductile fracture of VT23M titanium alloy and identification of dimples on fractograms of different scale.” Materials 12 (13): 2051. https://doi.org/10.3390/ma12132051.
Konovalenko, I., P. Maruschak, M. Chausov, and O. Prentkovskis. 2017. “Fuzzy logic analysis of parameters of dimples of ductile tearing on the digital image of fracture surface.” Procedia Eng. 187 (Jan): 229–234. https://doi.org/10.1016/j.proeng.2017.04.369.
Konovalenko, I., P. Maruschak, O. Prentkovskis, and R. Junevičius. 2018. “Investigation of the rupture surface of the titanium alloy using convolutional neural networks.” Materials 11 (12): 2467. https://doi.org/10.3390/ma11122467.
Kudrya, A. V., E. A. Sokolovskaya, N. H. Le, and H. N. Ngo. 2018. “Relation between the morphology of different-nature ductile fractures and properties of structural steels.” Met. Sci. Heat Treat. 60 (3): 236–242. https://doi.org/10.1007/s11041-018-0267-5.
Kumar, A., B. K. Choudhary, T. Jayakumar, K. Bhanu Sankara Rao, and B. Raj. 2000. “Influence of thermal ageing and creep on ultrasonic velocity in 9Cr-1Mo ferritic steel.” Trans. Indian Inst. Met. 53 (3): 341–345.
Lagneborg, R., and B. Bergman. 1976. “The stress/creep rate behaviour of precipitation-hardened alloys.” Met. Sci. 10 (1): 20–28. https://doi.org/10.1179/030634576790431462.
Leblond, J. B., G. Perrin, and J. Devaux. 1994. “Bifurcation effects in ductile metals with damage delocalization.” J. Appl. Mech. 61: 236–242.
Le Roy, G., J. D. Embury, G. Edwards, and M. F. Ashby. 1981. “A model of ductile fracture based on the nucleation and growth of voids.” Acta Metall. 29 (8): 1509–1522. https://doi.org/10.1016/0001-6160(81)90185-1.
McClintock, F. A. 1968a. “A criterion for ductile fracture by the growth of holes.” J. Appl. Mech. 35 (2): 363–371. https://doi.org/10.1115/1.3601204.
McClintock, F. A. 1968b. “On the mechanics of fracture from inclusions.” In Ductility, 255–278. Metals Park, OH: American Society for Metals.
Miller, D. A., and T. G. Langdon. 1980. “Density measurements as an assessment of creep damage and cavity growth.” Metall. Trans. A 11 (6): 955–962. https://doi.org/10.1007/BF02654709.
Mintz, J. M., and A. K. Mukherjee. 1988. “Creep cavity growth from tritium-induced helium bubbles in nickel.” Metall. Trans. A 19 (4): 821–827. https://doi.org/10.1007/BF02628364.
Mirza, M. S., D. C. Barton, and P. Church. 1996. “The effect of stress triaxiality and strain-rate on the fracture characteristics of ductile metals.” J. Mater. Sci. 31 (2): 453–461. https://doi.org/10.1007/BF01139164.
Needham, N. G., and T. Gladman. 1980. “Nucleation and growth of creep cavities in a type 347 steel.” Met. Sci. 14 (2): 64–72. https://doi.org/10.1179/030634580790426300.
Needham, N. G., and T. Gladman. 1986. “Intergranular cavity damage and creep fracture of 1Cr-0·5Mo steels.” Mater. Sci. Technol. 2 (4): 368–373. https://doi.org/10.1179/mst.1986.2.4.368.
Needleman, A., and J. R. Rice. 1980. “Plastic creep flow effects in the diffusive cavitation of grain boundaries.” Acta Metall. 28 (10): 1315–1332. https://doi.org/10.1016/0001-6160(80)90001-2.
Nieh, T. G., and W. D. Nix. 1979. “A study of intergranular cavity growth in Ag+ 0.1% MgO at elevated temperatures.” Acta Metall. 27 (6): 1097–1106. https://doi.org/10.1016/0001-6160(79)90197-4.
Nieh, T. G., and W. D. Nix. 1980. “A comparison of the dimple spacing on intergranular creep fracture surfaces with the slip band spacing for copper.” Scr. Metall. 14 (3): 365–368. https://doi.org/10.1016/0036-9748(80)90360-9.
Niu, L., Q. Zhang, Y. Ma, Y. Chen, B. Han, and K. Huang. 2022. “A ductile fracture criterion under warm-working conditions based on the multiscale model combining molecular dynamics with finite element methods.” Int. J. Plast. 149 (Feb): 103185. https://doi.org/10.1016/j.ijplas.2021.103185.
Nix, W. D. 1983. “Introduction to the viewpoint set on creep cavitation.” Scr. Metall. 17 (1): 1–4. https://doi.org/10.1016/0036-9748(83)90060-1.
Nix, W. D. 1988. “Mechanisms and controlling factors in creep fracture.” Mater. Sci. Eng., A 103 (1): 103–110. https://doi.org/10.1016/0025-5416(88)90556-3.
Perrin, G., and J. B. Leblond. 1990. “Analytical study of a hollow sphere made of plastic porous material and subjected to hydrostatic tension-application to some problems in ductile fracture of metals.” Int. J. Plast. 6 (6): 677–699. https://doi.org/10.1016/0749-6419(90)90039-H.
Pushkareva, M., J. Adrien, E. Maire, J. Segurado, J. Llorca, and A. Weck. 2016. “Three-dimensional investigation of grain orientation effects on void growth in commercially pure titanium.” Mater. Sci. Eng., A 671 (Aug): 221–232. https://doi.org/10.1016/j.msea.2016.06.053.
Quickel, G., C. Jaske, B. Rollins, and J. Beavers. 2009. “Failure analysis and remaining life assessment of methanol reformer tubes.” J. Fail. Anal. Prev. 9 (6): 511–516. https://doi.org/10.1007/s11668-009-9294-2.
Raj, R. 1978. “Intergranular fracture in bicrystals.” Acta Metall. 26 (2): 341–349. https://doi.org/10.1016/0001-6160(78)90133-5.
Raj, R., and M. F. Ashby. 1975. “Intergranular fracture at elevated temperature.” Acta Metall. 23 (6): 653–666. https://doi.org/10.1016/0001-6160(75)90047-4.
Raj, R., H. M. Shih, and H. H. Johnson. 1977. “Correction to: “Intergranular fracture at elevated temperature.” Scr. Metall. 11 (10): 839–842. https://doi.org/10.1016/0036-9748(77)90333-7.
Rice, J. R., and D. M. Tracey. 1969. “On the ductile enlargement of voids in triaxial stress fields.” J. Mech. Phys. Solids 17 (3): 201–217. https://doi.org/10.1016/0022-5096(69)90033-7.
Riedel, H. 1987. “The role of impurity segregation in cavity nucleation.” In Fracture at high temperatures, 116–130. Berlin: Springer.
Rousselier, G. 1987. “Ductile fracture models and their potential in local approach of fracture.” Nucl. Eng. Des. 105 (1): 97–111. https://doi.org/10.1016/0029-5493(87)90234-2.
Samuel, E. I., B. K. Choudhary, K. B. S. Rao, and B. Raj. 2008. Pressure vessels and piping: Materials and properties. Edited by B. Raj, B. K. Choudhary, and A. Kumar. New Delhi, India: Narosa Publishing House.
Senior, B. A., F. W. Noble, and B. L. Eyre. 1988. “The effect of ageing on the ductility of 9Cr-1 Mo steel.” Acta Metall. 36 (7): 1855–1862. https://doi.org/10.1016/0001-6160(88)90253-2.
Shrestha, T., M. Basirat, I. Charit, G. P. Potirniche, K. K. Rink, and U. Sahaym. 2012. “Creep deformation mechanisms in modified 9Cr-1Mo steel.” J. Nucl. Mater. 423 (1–3): 110–119. https://doi.org/10.1016/j.jnucmat.2012.01.005.
Speight, M. V., and W. Beere. 1975. “Vacancy potential and void growth on grain boundaries.” Met. Sci. 9 (1): 190–191. https://doi.org/10.1179/030634575790445161.
Speight, M. V., and J. E. Harris. 1967. “The kinetics of stress-induced growth of grain-boundary voids.” Met. Sci. 1: 83–85.
Svensson, L.-E., and G. L. Dunlop. 1982. “Growth mechanism of intergranular creep cavities in α-brass.” Met. Sci. 16 (1): 57–64. https://doi.org/10.1179/030634582790427064.
Thomason, P. F. 1968. “A theory for ductile fracture by internal necking of cavities.” J. Inst. Met. 96: 360–365.
Thompson, A. W. 1987. “Modeling of local strains in ductile fracture.” Metall. Trans. A 18 (11): 1877–1886. https://doi.org/10.1007/BF02647017.
Van Stone, R. H., J. R. Low, and J. L. Shannon. 1978. “Investigation of the fracture mechanism of Ti-5AI-2.5Sn at cryogenic temperatures.” Metall. Trans. A 9 (4): 539–552. https://doi.org/10.1007/BF02646411.
Weertman, J. 1973. “Hull-Rimmer grain boundary void growth theory—A correction.” Scr. Metall. 7 (10): 1129–1130. https://doi.org/10.1016/0036-9748(73)90027-6.
Weertman, J. 1986. “Zener-Stroh crack, Zener-Hollomon parameter, and other topics.” J. Appl. Phys. 60 (6): 1877–1887. https://doi.org/10.1063/1.337236.
Yalçinkaya, T., İ. T. Tandoğan, and İ. Ozdemir. 2021. “Void growth based inter-granular ductile fracture in strain gradient polycrystalline plasticity.” Int. J. Plast. 147 (Dec): 103123. https://doi.org/10.1016/j.ijplas.2021.103123.
Yoshida, H., and M. Nagumo. 1998a. “FEM analysis of ductile crack growth in fracture transition region for steels with different void nucleation frequency.” ISIJ Int. 38 (2): 196–202.
Yoshida, H., and M. Nagumo. 1998b. “Microstructures controlling the ductile crack growth resistance of low carbon steels.” Metall. Mater. Trans. A 29 (1): 279–287.
Zagulyaev, D. V., S. V. Konovalov, N. G. Yaropolova, Y. F. Ivanov, I. A. Komissarova, and V. E. Gromov. 2015. “Effect of the magnetic field on the surface morphology of copper upon creep fracture.” J. Surf. Invest. 9 (2): 410–414. https://doi.org/10.1134/S1027451015010188.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 5May 2023

History

Received: Jan 6, 2022
Accepted: Jul 7, 2022
Published online: Feb 21, 2023
Published in print: May 1, 2023
Discussion open until: Jul 21, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Scientific Officer, Dept. of Atomic Energy, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra 400 085, India. ORCID: https://orcid.org/0000-0003-1822-0135. Email: [email protected]; [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share