Technical Papers
Dec 16, 2022

Use of Saline Water in Cemented Fine Tailings Backfill with One-Part Alkali-Activated Slag

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 3

Abstract

To evaluate the feasibility of mixing saline underground water (SUW) in the preparation of cemented fine tailings backfill (CFTB), the compressive strength, pore fluid pH, slag hydration degree, hydration phase composition/structure, and pore morphology of CFTB have been tested. The binder used was a one-part alkali-activated slag composed of ground-granulated blast furnace slag (67.8% by weight) as precursor and desulfurized gypsum (25.9% by weight) and hydrated lime (6.3% by weight) as composite activator. The results showed that using SUW instead of deionized water as mixing medium had both negative and positive effects on the strength development of CFTB, depending on the curing time. At the very early ages (1–3 days), mixing SUW resulted in a decrease of the pore solution pH, which is due to the reaction of positive ions in SUW with OH ions and the decrease of slag hydration rate, leading to a lower strength of CFTB. The positive effects were observed at the later ages (7–28 days). The higher later-age strength of SUW-mixed CFTB is attributed to two factors: (1) a smaller amount of ettringite (AFt) was generated at the very early ages, which reduced the encapsulation-hindering effect on the slag decomposition; and (2) SUW increased the slag hydration rate, promoting the condensation of calcium silicate hydrates, which results in increased formation of a calcium silicate aluminate hydrate [C-(A)-S-H] phase with rigid three-dimensional structure. These findings can provide important information for the use of SUW in CFTB in coastal and arid regions.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1906208, 51904055, and 51804063) and the Fundamental Research Funds for the Central Universities of China (Grant Nos. N2001010 and N2101043).

References

Aiken, T. A., W. Sha, J. Kwasny, and M. N. Soutsos. 2017. “Resistance of geopolymer and Portland cement based systems to silage effluent attack.” Cem. Concr. Res. 92 (Jan): 56–65. https://doi.org/10.1016/j.cemconres.2016.11.015.
Alam, S., S. K. Das, and B. H. Rao. 2019. “Strength and durability characteristic of alkali activated GGBS stabilized red mud as geo-material.” Constr. Build. Mater. 211 (Mar): 932–942. https://doi.org/10.1016/j.conbuildmat.2019.03.261.
Alharbi, N., B. Varela, and R. Hailstone. 2020. “Alkali-activated slag characterization by scanning electron microscopy, X-ray microanalysis and nuclear magnetic resonance spectroscopy.” Mater. Charact. 168 (9): 110504. https://doi.org/10.1016/j.matchar.2020.110504.
Andersen, M. D., H. J. Jakobsen, and J. Skibsted. 2003. “Incorporation of aluminum in the calcium silicate hydrate (C-S-H) of hydrated portland cements: A high-field 27Al and 29Si MAS NMR investigation.” Inorg. Chem. 42 (20): 2280–2287. https://doi.org/10.1021/ic020607b.
Andersen, M. D., H. J. Jakobsen, and J. Skibsted. 2006. “A new aluminium-hydrate species in hydrated portland cements characterized by 27Al and 29Si MAS NMR spectroscopy.” Cem. Concr. Res. 36 (1): 3–17. https://doi.org/10.1016/j.cemconres.2005.04.010.
ASTM. 2020. Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39-20. West Conshohocken, PA: ASTM.
Behera, S. K., C. N. Ghosh, K. Mishra, D. P. Mishra, P. Singh, J. Buragohain, P. K. Mandal, and M. K. Sethi. 2020. “Utilisation of lead–zinc mill tailings and slag as paste backfill materials.” Environ. Earth Sci. 79 (16): 1–18. https://doi.org/10.1007/s12665-020-09132-x.
Behera, S. K., D. P. Mishra, P. Singh, K. S. Mishra, K. Mandal, C. N. Ghosh, R. Kumar, and P. K. Mandal. 2021. “Utilization of mill tailings, fly ash and slag as mine paste backfill material: Review and future perspective.” Constr. Build. Mat. 309 (21): 125120. https://doi.org/10.1016/j.conbuildmat.2021.125120.
Belem, T., and M. Benzaazoua. 2008. “Design and application of underground mine paste backfill technology.” Geotech. Geol. Eng. 26 (2): 175. https://doi.org/10.1007/s10706-007-9167-y.
Benarchid, Y., Y. Taha, R. Argane, and M. Benzaazoua. 2018. “Application of Quebec recycling guidelines to assess the use feasibility of waste rocks as construction aggregates.” Resour. Policy 59 (C): 68–76. https://doi.org/10.1016/j.resourpol.2018.01.004.
Benzaazoua, M., B. Bussière, I. Demers, M. Aubertin, É. Fried, and A. Blier. 2008. “Integrated mine tailings management by combining environmental desulphurization and cemented paste backfill: Application to mine Doyon, Quebec, Canada.” Miner. Eng. 21 (4): 330–340. https://doi.org/10.1016/j.mineng.2007.11.012.
Benzaazoua, M., M. Fall, and T. Belem. 2004. “A contribution to understanding the hardening process of cemented pastefill.” Miner. Eng. 17 (Oct): 141–152. https://doi.org/10.1016/j.mineng.2003.10.022.
Bhanbhro, R., M. A. Zardari, B. A. Memon, M. A. Soomro, T. Edeskär, and S. Knutsson. 2021. “Mechanical properties and particle breakage of uniform-sized tailings material.” J. Mater. Civ. Eng. 33 (3): 04020481. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003597.
Bilginer, A., O. Canbek, and S. T. Erdogan. 2020. “Activation of blast furnace slag with soda production waste.” J. Mater. Civ. Eng. 32 (1): 04019316. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002987.
Bondar, D., Q. Ma, M. Soutsos, M. Basheer, J. L. Provis, and S. Nanukuttan. 2018. “Alkali activated slag concretes designed for a desired slump, strength and chloride diffusivity.” Constr. Build. Mat. 190 (Nov): 191–199. https://doi.org/10.1016/j.conbuildmat.2018.09.124.
Bruschi, G. J., C. Santos, M. T. D. Araújo, S. T. Ferrazzo, and N. C. Consoli. 2021. “Green stabilization of bauxite tailings: A mechanical study on alkali-activated materials.” J. Mater. Civ. Eng. 33 (11): 06021007. https://doi.org/10.1061/(ASCE) MT.1943-5533.00039 49.
Cetin, S., M. Marangoni, and E. Bernardo. 2015. “Lightweight glass–ceramic tiles from the sintering of mining tailings.” Ceram. Int. 41 (4): 5294–5300. https://doi.org/10.1016/j.ceramint.2014.12.049.
Cui, L., and M. Fall. 2017. “Multiphysics model for consolidation behavior of cemented paste backfill.” Int. J. Geomech. 17 (3): 04016077. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000743.
Davidovits, J. 2015. Geopolymer chemistry & applications, 4th ed., 558–568. Saint-Quentin, France: Institut Geopolymere.
Deng, D. Q., L. Liu, Z. L. Yao, K. I.-I. L. Song, and D. Z. Lao. 2017. “A practice of ultra-fine tailings disposal as filling material in a gold mine.” J. Environ. Manage. 196 (12): 100–109. https://doi.org/10.1016/j.jenvman.2017.02.056.
Duan, X., F. Ma, H. Gu, J. Guo, H. Zhao, G. Liu, and S. Liu. 2021. “Identification of mine water sources based on the spatial and chemical characteristics of bedrock brines: A case study of the Xinli gold mine.” Mine Water Environ. 41 (1): 126–142. https://doi.org/10.1007/s10230-021-00810-1.
Elahi, M., M. M. Hossain, M. R. Karim, M. Zain, and C. Shearer. 2020. “A review on alkali-activated binders: Materials composition and fresh properties of concrete.” Constr. Build. Mater. 260 (11): 119788. https://doi.org/10.1016/j.conbuildmat.2020.119788.
Escalante, J. I., L. Y. Gómez, K. K. Johal, G. Mendoza, and J. Méndez. 2001. “Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions.” Cem. Concr. Res. 31 (10): 1403–1409. https://doi.org/10.1016/S0008-8846(01)00587-7.
Fall, M., M. Benzaazoua, and S. Ouellet. 2005. “Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill.” Miner. Eng. 18 (1): 41–44. https://doi.org/10.1016/j.mineng.2004.05.012.
Gautam, P. K., P. Kalla, R. Nagar, R. Agrawal, and A. S. Jethoo. 2018. “Laboratory investigations on hot mix asphalt containing mining waste as aggregates.” Constr. Build. Mat. 168 (Apr): 143–152. https://doi.org/10.1016/j.conbuildmat.2018.02.115.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. 2016. Particle size analysis—Laser diffraction methods. GB/T 19077. Beijing: China Standard Press.
Gitari, M. W., A. S. Akinyemi, R. Thobakgale, P. C. Ngoejana, L. Ramugondo, M. Matidza, S. E. Mhlongo, F. A. Dacosta, and N. Nemapate. 2018. “Physicochemical and mineralogical characterization of Musina mine copper and New Union gold mine tailings: Implications for fabrication of beneficial geopolymeric construction materials.” J. Afr. Earth. Sci. 137 (Jan): 218–228. https://doi.org/10.1016/j.jafrearsci.2017.10.016.
Gomes, M. F. M., J. G. M. Filho, J. A. Pinheiro, and C. Crystal. 2019. “Disposal of tailings and the mining industry perspective: A case study of the Cuiab´a mine.” In Proc., 22nd Int. Conf., on Paste, Thickened and Filtered Tailings, 219–231. Perth, Australia: Australian Centre for Geomechanics.
Gu, H., F. Ma, J. Guo, H. Zhao, R. Lu, and G. Liu. 2017. “A spatial mixing model to assess groundwater dynamics affected by mining in a coastal fractured aquifer, China.” Mine Water Environ. 37 (2): 405–420. https://doi.org/10.1007/s10230-017-0505-x.
Gupta, S. K., V. K. Agarwal, S. N. Singh, V. Seshadri, D. Mills, J. Singh, and C. Prakash. 2012. “Prediction of minimum fluidization velocity for fine tailings materials.” Powder Technol. 196 (3): 263–271. https://doi.org/10.1016/j.powtec.2009.08.003.
Haas, J., and A. Nonat. 2015. “From C-S-H to C-A-S-H: Experimental study and thermodynamic modeling.” Cem. Concr. Res. 68 (10): 124–138. https://doi.org/10.1016/j.cemconres.2014.10.020.
Hu, J., and K. J. Wang. 2014. “Influence of cement fineness and water-to-cement ratio on mortar early-age heat of hydration and set times.” Constr. Build. Mater. 50 (Jan): 657–663. https://doi.org/10.1016/j.conbuildmat.2013.10.011.
Huws, S. A., C. Creevery, L. B. Oyama, I. Mizrahi, S. E. Denman, M. Popova, E. Forano, S. M. Waters, and M. Hess. 2018. “Addressing global ruminant agricultural challenges through understanding the rumen microbiome: Past, present and future.” Front. Microbiol. 9 (Sep): 2161. https://doi.org/10.3389/fmicb.2018.02161.
Idiart, A. E., C. M. López, and I. Carol. 2011. “Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: A meso-scale model.” Cem. Concr. Compos. 33 (3): 411–423. https://doi.org/10.1016/j.cemconcomp.2010.12.001.
Jiang, H., Z. Qi, E. Yilmaz, J. Han, J. Qiu, and C. Dong. 2019. “Effectiveness of alkali-activated slag as alternative binder on workability and early age compressive strength of cemented paste backfills.” Constr. Build. Mat. 218 (Sep): 689–700. https://doi.org/10.1016/j.conbuildmat.2019.05.162.
Jiang, H., H. Yi, E. Yilmaz, S. Liu, and J. Qiu. 2020. “Ultrasonic evaluation of strength properties of cemented paste backfill: Effects of mineral admixture and curing temperature.” Ultrasonics 100 (Sep): 105983. https://doi.org/10.1016/j.ultras.2019.105983.
Juenger, M. C. G., and H. M. Jennings. 2001. “The use of nitrogen adsorption to assess the microstructure of cement pastes.” Cem. Concr. Res. 31 (Jan): 883–892. https://doi.org/10.1016/S0008-8846(01)00493-8.
Juenger, M. C. G., P. J. M. Monteiro, E. M. Gartner, and G. P. Denbeaux. 2005. “A soft X-ray microscope investigation into the effects of calcium chloride on tricalcium silicate hydration.” Cem. Concr. Res. 35 (1): 19–25. https://doi.org/10.1016/j.cemconres.2004.05.016.
Jun, Y., Y. H. Bae, T. Y. Shin, J. H. Kim, and J. Y. Hong. 2020. “Alkali-activated slag paste with different mixing water: A comparison study of early-age paste using electrical resistivity.” Materials (Basel) 13 (11): 2447. https://doi.org/10.3390/ma13112447.
Karthik, M. M., J. B. Mander, and S. Hurlebaus. 2020. “Simulating behaviour of large reinforced concrete beam-column joints subject to ASR/DEF deterioration and influence of corrosion.” Eng. Struct. 222 (6): 111064. https://doi.org/10.1016/j.engstruct.2020.111064.
Ke, X. Y., S. A. Bernal, O. H. Hussein, and J. L. Provis. 2017. “Chloride binding and mobility in sodium carbonate-activated slag pastes and mortars.” Mater. Struct. 50 (6): 252. https://doi.org/10.1617/s11527-017-1121-8.
L’Hôpital, E., B. Lothenbach, D. A. Kulik, and K. Scrivener. 2016. “Influence of calcium to silica ratio on aluminium uptake in calcium silicate hydrate.” Cem. Concr. Res. 85 (Jul): 111–121. https://doi.org/10.1016/j.cemconres.2016.01.014.
L’Hôpital, E., B. Lothenbach, G. Le Saout, D. Kulik, and K. Scrivener. 2015. “Incorporation of aluminium in calcium-silicate-hydrates.” Cem. Concr. Res. 75 (Sep): 91–103. https://doi.org/10.1016/j.cemconres.2015.04.007.
Li, C., A. Wang, X. Chen, Q. Chen, Y. Zhang, and Y. Li. 2013. “Regional distribution and sustainable development strategy of mineral resources in China.” Chin. Geogr. Sci. 23 (4): 470–481. https://doi.org/10.1007/s11769-013-0611-z.
Lindsay, M. B. J., M. C. Moncur, J. G. Bain, J. L. Jambor, C. J. Ptacek, and D. W. Blowes. 2015. “Geochemical and mineralogical aspects of sulfide mine tailings.” Appl. Geochem. 57 (12): 157–177. https://doi.org/10.1016/j.apgeochem.2015.01.009.
Lippmaa, E., M. Maegi, A. Samoson, G. Engelhardt, and A. R. Grimmer. 1980. “Structural studies of silicates by solid-state high-resolution silicon-29 NMR.” J. Am. Chem. Soc. 102 (15): 4889–4893. https://doi.org/10.1021/ja00535a008.
Little, L., A. N. Mainza, M. Becker, and J. Wiese. 2017. “Fine grinding: How mill type affects particle shape characteristics and mineral liberation.” Miner. Eng. 111 (5): 148–157. https://doi.org/10.1016/j.mineng.2017.05.007.
Luke, K., and F. P. Glasser. 1987. “Selective dissolution of hydrated blast furnace slag cements.” Cem. Concr. Res. 17 (2): 273–282. https://doi.org/10.1016/0008-8846(87)90110-4.
Lv, W., Z. Q. Sun, and Z. J. Su. 2020. “Study of seawater mixed one-part alkali activated GGBFS-fly ash.” Cem. Concr. Compos. 106 (19): 103484. https://doi.org/10.1016/j.cemconcomp.2019.103484.
Maghsoodloorad, H., and A. Allahverdi. 2017. “Developing low-cost activators for alkali-activated phosphorus slag-based binders.” J. Mater. Civ. Eng. 29 (6): 04017006. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001806.
Mehta, A., and R. Siddique. 2016. “An overview of geopolymers derived from industrial by-products.” Constr. Build. Mat. 127 (Nov): 183–198. https://doi.org/10.1016/j.conbuildmat.2016.09.136.
Ministry of Water Resources, PRC. 2019. Standard for geotechnical testing method. GB/T 50123-2019. Beijing: China Standard Press.
Mostafa, N. Y., and P. W. Brown. 2005. “Heat of hydration of high reactive pozzolans in blended cements: Isothermal conduction calorimetry.” Thermochim. Acta 435 (2): 162–167. https://doi.org/10.1016/j.tca.2005.05.014.
Myers, R. J., E. L’Hôpital, J. L. Provis, and B. Lothenbach. 2015. “Effect of temperature and aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium conditions.” Cem. Concr. Res. 68 (3): 83–93. https://doi.org/10.1016/j.cemconres.2014.10.015.
Ouffa, N., R. Trauchessec, M. Benzaazoua, A. Lecomte, and T. Belem. 2022. “A methodological approach applied to elaborate alkali-activated binders for mine paste backfills.” Cem. Concr. Compos. 127 (10): 104381. https://doi.org/10.1016/j.cemconcomp.2021.104381.
Pardal, X., I. Pochard, and A. Nonat. 2009. “Experimental study of Si-Al substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions.” Cem. Concr. Res. 39 (8): 637–643. https://doi.org/10.1016/j.cemconres.2009.05.001.
Peltoniemi, M., R. Kallio, A. Tanhua, S. Luukkanen, and P. Perämäki. 2020. “Mineralogical and surface chemical characterization of flotation feed and products after wet and dry grinding.” Miner. Eng. 156 (Feb): 106500. https://doi.org/10.1016/j.mineng.2020.106500.
Pereira dos Santos, C., G. J. Bruschi, J. R. G. Mattos, and N. C. Consoli. 2022. “Stabilization of gold mining tailings with alkali-activated carbide lime and sugarcane bagasse ash.” Transp. Geotech. 32 (21): 100704. https://doi.org/10.1016/j.trgeo.2021.100704.
Peter, J. G., F. J. Humphreys, and R. Beanland. 2001. Electron microscopy and analysis. London: Taylor and Francis.
Provis, J. L. 2017. “Alkali-activated materials.” Cem. Concr. Res. 114 (9): 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009.
Provis, J. L., and S. A. Bernal. 2015. “Milestones in the analysis of alkali-activated binders.” JSCM 4 (2): 74–84. https://doi.org/10.1080/21650373.2014.958599.
Provis, J. L., A. Palomo, and C. Shi. 2015. “Advances in understanding alkali-activated materials.” Cem. Concr. Res. 78 (Apr): 110–125. https://doi.org/10.1016/j.cemconres.2015.04.013.
Putnis, A. 1992. Introduction to mineral sciences. Cambridge, UK: Cambridge University Press.
Qi, C.-C., and A. Fourie. 2019. “Cemented paste backfill for mineral tailings management: Review and future perspectives.” Miner. Eng. 144 (Dec): 106025. https://doi.org/10.1016/j.mineng.2019.106025.
Qiao, X., and J. Chen. 2019. “Correlation of propagation rate of corrosive crack in concrete under sulfate attack and growth rate of delayed ettringite.” Eng. Fract. Mech. 209 (Mar): 333–343. https://doi.org/10.1016/j.engfracmech.2019.01.036.
Qiu, J. P., Z. B. Guo, L. Yang, H. Q. Jiang, and Y. L. Zhao. 2019. “Effects of packing density and water film thickness on the fluidity behaviour of cemented paste backfill.” Powder Technol. 359 (Jan): 27–35. https://doi.org/10.1016/j.powtec.2019.10.046.
Qiu, J. P., Z. B. Guo, L. Yang, H. Q. Jiang, and Y. L. Zhao. 2020. “Effect of tailings fineness on flow, strength, ultrasonic and microstructure characteristics of cemented paste backfill.” Constr. Build. Mat. 263 (12): 120645. https://doi.org/10.1016/j.conbuildmat.2020.120645.
Rashad, A. M., Y. Bai, P. A. M. Basheer, N. B. Milestone, and N. C. Collier. 2013. “Hydration and properties of sodium sulfate activated slag.” Cem. Concr. Compos. 37 (Mar): 20–29. https://doi.org/10.1016/j.cemconcomp.2012.12.010.
Rashad, A. M., and M. Ezzat. 2019. “A preliminary study on the use of magnetic, Zamzam, and sea water as mixing water for alkali-activated slag pastes.” Constr. Build. Mat. 207 (May): 672–678. https://doi.org/10.1016/j.conbuildmat.2019.02.162.
Ren, J., H. F. Sun, K. Cao, Z. L. Ren, B. Zhou, W. S. Wu, and F. Xing. 2021. “Effects of natural seawater mixing on the properties of alkali-activated slag binders.” Constr. Build. Mat. 294 (3): 123601. https://doi.org/10.1016/j.conbuildmat.2021.123601.
Richardson, I. G., A. R. Brough, G. W. Groves, and C. M. Dobson. 1994. “The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase.” Cem. Concr. Res. 24 (5): 813–829. https://doi.org/10.1016/0008-8846(94)90002-7.
Schilling, P. J., A. Roy, H. C. Eaton, P. G. Malone, and W. N. Brabston. 1994. “Microstructure, strength, and reaction products of ground granulated blast-furnace slag activated by highly concentrated NaOH solution.” J. Mater. Res. 9 (1): 188–197. https://doi.org/10.1557/JMR.1994.0188.
Shi, C., P. Krivenko, and D. Roy. 2006. Alkali-activated cements and concretes. Abingdon, UK: Taylor & Francis.
Shi, D., Y. Yao, J. Ye, and W. Zhang. 2019. “Effects of seawater on mechanical properties, mineralogy and microstructure of calcium silicate slag-based alkali-activated materials.” Constr. Build. Mater. 212 (Jul): 569–577. https://doi.org/10.1016/j.conbuildmat.2019.03.288.
Shirayama, Y., H. Itoh, and T. Fukushima. 2017. “Recent developments in environmental impact assessment with regard to mining of deep-sea mineral resources.” Deep-Sea Mining 2017 (1): 445–463. https://doi.org/10.1007/978-3-319-52557-0_15.
Sim, S., H. Lee, D. Jeon, H. Song, W. S. Yum, D. Kim, J. Suh, and J. E. Oh. 2018. “Gypsum-dependent effect of NaCl on strength enhancement of CaO-activated slag binders.” Appl. Sci. 8 (12): 2515. https://doi.org/10.3390/app8122515.
Skibsted, J., and M. D. Andersen. 2013. “The effect of alkali ions on the incorporation of aluminum in the calcium silicate hydrate (C-S-H) phase resulting from Portland cement hydration studied by Si29 MAS NMR.” J. Am. Ceram. Soc. 96 (2): 651–656. https://doi.org/10.1111/jace.12024.
Song, S., D. Sohn, H. M. Jennings, and T. O. Mason. 2000. “Hydration of alkali-activated ground granulated blast furnace slag.” J. Mater. Sci. 35 (1): 249–257. https://doi.org/10.1023/A:1004742027117.
Stade, H., and D. Müller. 1987. “On the coordination of Al in ill-crystallized C-S-H formed by hydration of tricalciumsilicate and by precipitation reactions at ambient temperatures.” Cem. Concr. Res. 17 (4): 553–561. https://doi.org/10.1016/0008-8846(87)90128-1.
State Administration for Market Regulation. 2019. Quantitative determination of constituents of cement. GB/T 12960-2019. Beijing: China Standard Press.
Subyani, A. M. 2005. “Hydrochemical identification and salinity problem of ground-water in Wadi Yalamlam basin, western Saudi Arabia.” J. Arid. Environ. 60 (1): 53–66. https://doi.org/10.1016/j.jaridenv.2004.03.009.
Sun, G. K., J. F. Young, and R. J. Kirkpatrick. 2006. “The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples.” Cem. Concr. Res. 36 (1): 18–29. https://doi.org/10.1016/j.cemconres.2005.03.002.
Suzette, M. K. 2020. Mineral commodity summaries 2020, 1–200. Washington, DC: US Geological Survey.
Telahigue, F., F. Souid, B. Agoubi, A. Chahlaoui, and A. Kharroubi. 2020. “Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: A case study in Jerba Island, southeastern Tunisia.” Phys. Chem. Earth 2020 (1): 118–119. https://doi.org/10.1016/j.pce.2020.102886.
Wang, J., E. Liu, and L. Li. 2018a. “Multiscale investigations on hydration mechanisms in seawater OPC paste.” Constr. Build. Mater. 191 (Dec): 891–903. https://doi.org/10.1016/j.conbuildmat.2018.10.010.
Wang, J., J. Xie, Y. Wang, Y. Liu, and Y. Ding. 2020. “Rheological properties, compressive strength, hydration products and microstructure of seawater-mixed cement pastes.” Cem. Concr. Compos. 114 (2): 103770. https://doi.org/10.1016/j.cemconcomp.2020.103770.
Wang, S., K. Guo, S. Qi, and L. Lu. 2018b. “Effect of frictional grinding on ore characteristics and selectivity of magnetic separation.” Miner. Eng. 122 (Jun): 251–257. https://doi.org/10.1016/j.mineng.2018.04.015.
Wu, J. Y., M. M. Feng, X. Y. Ni, X. B. Mao, Z. Q. Chen, and G. S. Han. 2019. “Aggregate gradation effects on dilatancy behavior and acoustic characteristic of cemented rockfill.” Ultrasonics 92 (Feb): 79–92. https://doi.org/10.1016/j.ultras.2018.09.008.
Xiao, J., C. Qiang, A. Nanni, and K. Zhang. 2017. “Use of sea-sand and seawater in concrete construction: Current status and future opportunities.” Constr. Build. Mater. 155 (Nov): 1101–1111. https://doi.org/10.1016/j.conbuildmat.2017.08.130.
Yang, T. H., J. Liu, W. C. Zhu, D. Elsworth, L. G. Tham, and C. A. Tang. 2007. “A coupled flow-stress-damage model for groundwater outbursts from an underlying aquifer into mining excavations.” Int. J. Rock Mech. Mining Sci. 44 (1): 87–97. https://doi.org/10.1016/j.ijrmms.2006.04.012.
Ye, C. Q., F. He, H. Shu, H. Qi, Q. P. Zhang, P. Y. Song, and J. L. Xie. 2015. “Preparation and properties of sintered glass–ceramics containing Au–Cu tailing waste.” Mater. Des. 86 (Dec): 782–787. https://doi.org/10.1016/j.matdes.2015.07.173.
Yilmaz, E. 2011. “Advances in reducing large volumes of environmentally harmful mine waste rocks and tailings.” Miner. Resour. Manage. 27 (2): 89–112. https://doi.org/10.1016/j.ijrmms.2010.08.005.
Zhao, H., F. Ma, G. Li, Y. Zhang, and J. Guo. 2012a. “Study of the hydrogeological characteristics and permeability of the Xinli Seabed Gold Mine in Laizhou Bay, Jiaodong Peninsula, China.” Environ. Earth Sci. 65 (7): 2003–2014. https://doi.org/10.1007/s12665-011-1181-y.
Zhao, X., A. Fourie, and C.-C. Qi. 2020. “Mechanics and safety issues in tailing-based backfill: A review.” Int. J. Miner. Metall. Mater. 27 (9): 1165–1178. https://doi.org/10.1007/s12613-020-2004-5.
Zhao, Y. L., Y. M. Zhang, T. J. Chen, Y. L. Chen, and S. X. Bao. 2012b. “Preparation of high strength autoclaved bricks from hematite tailings.” Constr. Build. Mater. 28 (1): 450–455. https://doi.org/10.1016/j.conbuildmat.2011.08.078.
Zhu, X. H., D. S. Tang, K. Yang, Z. L. Zhang, Q. Li, Q. Pan, and C. H. Yang. 2018. “Effect of Ca(OH)2 on shrinkage characteristics and microstructures of alkali-activated slag concrete.” Constr. Build. Mat. 175 (12): 467–482. https://doi.org/10.1016/j.conbuildmat.2018.04.180.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 3March 2023

History

Received: Jan 10, 2022
Accepted: Jun 2, 2022
Published online: Dec 16, 2022
Published in print: Mar 1, 2023
Discussion open until: May 16, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Gengjie Zhu [email protected]
Ph.D. Candidate, Center for Rock Instability and Seismicity Research, School of Resource and Civil Engineering, Northeastern Univ., Shenyang 110819, PR China; Backfill Engineering Laboratory, Shandong Gold Mining Technology Co., Ltd., No. 18 St., Laizhou 261441, PR China. Email: [email protected]
Wancheng Zhu [email protected]
Professor, Center for Rock Instability and Seismicity Research, School of Resource and Civil Engineering, Northeastern Univ., Shenyang 110819, PR China (corresponding author). Email: [email protected]
Lecturer, Center for Rock Instability and Seismicity Research, School of Resource and Civil Engineering, Northeastern Univ., Shenyang 110819, PR China. Email: [email protected]
Associate Professor, Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern Univ., Shenyang 110819, PR China. ORCID: https://orcid.org/0000-0001-9859-393X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Development of Preplaced Alkali-Activated Coral Concrete for a Marine Environment, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-16226, 36, 1, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share