Technical Papers
Sep 16, 2022

Sustainable Improvement of Magnesium Oxychloride Cement Solidified Waste Sludge with Fly-Ash Inclusion

Publication: Journal of Materials in Civil Engineering
Volume 34, Issue 12

Abstract

Fly ash is introduced to strengthen the durability of magnesium oxychloride cement (MOC) solidified sludge, developing a more sustainable method for waste sludge disposal. The effect of curing age, fly ash dosage, and MgO/MgCl2 molar ratio on strength, microstructure, durability, and cementation products of MOC-solidified sludge was identified. Fly ash weakens the compressive strength of solidified sludge and prevents its long-term strength deterioration. The amount of brucite and magnesium silicate hydrates (M-S-H) gels increases with curing age, and the crystal shape of phase 5 becomes more robust when fly ash is added. Fly ash grains fill the pore space, enhancing the long-term strength and durability, but an excessive dosage of fly ash weakens the porous structure. The higher the fly ash dosage, the better the mass stabilization and strength retention. In particular, the strength of solidified sludge exposed to freeze–thaw cycles was enhanced for the dewatering and ice hardening effect. The results indicate that fly ash promotes the durability of MOC-solidified sludge, and the fly ash-MOC blend is proved a profitable and sustainable material for sludge solidification.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51879202 and 52079098).

References

Ahmad, T., K. Ahmad, and M. Alam. 2016. “Sustainable management of water treatment sludge through 3‘R’ concept.” J. Cleaner Prod. 124 (Jun): 1–13. https://doi.org/10.1016/j.jclepro.2016.02.073.
ASTM. 2016a. Standard test method for wetting and drying test of solid wastes. ASTM D4843-88. West Conshohocken, PA: ASTM.
ASTM. 2016b. Standard test methods for freezing and thawing compacted soil-cement mixtures. ASTM D560/D560M-16. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM C618-17a. West Conshohocken, PA: ASTM.
Berndt, M. L. 2009. “Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate.” Constr. Build. Mater. 23 (7): 2606–2613. https://doi.org/10.1016/j.conbuildmat.2009.02.011.
Chang, C., J. Dong, X. Xiao, W. Zheng, J. Wen, Y. Li, Q. Huang, and Y. Man. 2020. “Long-term mechanical properties and micro mechanism of magnesium oxychloride cement concrete.” Adv. Cem. Res. 32 (8): 371–378. https://doi.org/10.1680/jadcr.18.00174.
Chau, C. K., J. Chan, and Z. Li. 2009. “Influences of fly ash on magnesium oxychloride mortar.” Cem. Concr. Compos. 31 (4): 250–254. https://doi.org/10.1016/j.cemconcomp.2009.02.011.
Chen, L., and D. F. Lin. 2009. “Stabilization treatment of soft subgrade soil by sewage sludge ash and cement.” J. Hazard. Mater. 162 (1): 321–327. https://doi.org/10.1016/j.jhazmat.2008.05.060.
Chen, X., T. Zhang, W. Bi, and C. Cheeseman. 2019. “Effect of tartaric acid and phosphoric acid on the water resistance of magnesium oxychloride (MOC) cement.” Constr. Build. Mater. 213 (Jul): 528–536. https://doi.org/10.1016/j.conbuildmat.2019.04.086.
Cieślik, B. M., J. Namieśnik, and P. Konieczka. 2015. “Review of sewage sludge management: Standards, regulations and analytical methods.” J. Cleaner Prod. 90 (Mar): 1–15. https://doi.org/10.1016/j.jclepro.2014.11.031.
Conner, J. R., and S. L. Hoeffner. 1998. “A critical review of stabilisation/solidification technology.” Crit. Rev. Environ. Sci. Technol. 28 (4): 397–462. https://doi.org/10.1080/10643389891254250.
Deng, D. 2003. “The mechanism for soluble phosphates to improve the water resistance of magnesium oxychloride cement.” Cement Concr. Res. 33 (9): 1311–1317. https://doi.org/10.1016/S0008-8846(03)00043-7.
Diak, J., B. Örmeci, and C. Proux. 2011. “Freeze–thaw treatment of RBC sludge from a remote mining exploration facility in subarctic Canada.” Water Sci. Technol. 63 (6): 1309–1313. https://doi.org/10.2166/wst.2011.376.
Dohnálková, B., R. Drochytka, and J. Hodul. 2018. “New possibilities of neutralisation sludge solidification technology.” J. Cleaner Prod. 204 (Dec): 1097–1107. https://doi.org/10.1016/j.jclepro.2018.08.095.
Eliche-Quesada, D., C. Martínez-García, M. L. Martínez-Cartas, M. T. Cotes-Palomino, L. Pérez-Villarejo, N. Cruz-Pérez, and F. A. Corpas-Iglesias. 2011. “The use of different forms of waste in the manufacture of ceramic bricks.” Appl. Clay Sci. 52 (3): 270–276. https://doi.org/10.1016/j.clay.2011.03.003.
Gomaa, E., A. A. Gheni, C. Kashosi, and M. A. Elgawady. 2019. “Bond strength of eco-friendly class C fly ash-based thermally cured alkali-activated concrete to portland cement concrete.” J. Cleaner Prod. 235 (Oct): 404–416. https://doi.org/10.1016/j.jclepro.2019.06.268.
Guo, Y., Y. Zhang, K. Soe, W. D. Hutchison, H. Timmers, and M. R. Poblete. 2020. “Effect of fly ash on mechanical properties of magnesium oxychloride cement under water attack.” Struct. Concr. 21 (3): 1181–1199. https://doi.org/10.1002/suco.201900329.
He, P., M. U. Hossain, C. S. Poon, and D. C. Tsang. 2019. “Mechanical, durability and environmental aspects of magnesium oxychloride cement boards incorporating waste wood.” J. Cleaner Prod. 207 (Jan): 391–399. https://doi.org/10.1016/j.jclepro.2018.10.015.
He, P., C. S. Poon, and D. C. W. Tsang. 2018. “Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement.” Cem. Concr. Compos. 86 (Feb): 98–109. https://doi.org/10.1016/j.cemconcomp.2017.11.010.
Hoekstra, P., and R. D. Miller. 1967. “On the mobility of water molecules in the transition layer between ice and a solid surface.” J. Colloid Interface Sci. 25 (2): 166–173. https://doi.org/10.1016/0021-9797(67)90020-3.
Horpibulsuk, S., R. Rachan, and Y. Raksachon. 2009. “Role of fly ash on strength and microstructure development in blended cement stabilized silty clay.” Soils Found. 49 (1): 85–98. https://doi.org/10.3208/sandf.49.85.
Hoy, M., R. Rachan, S. Horpibulsuk, A. Arulrajah, and M. Mirzababaei. 2017. “Effect of wetting-drying cycles on compressive strength and microstructure of recycled asphalt pavement—Fly ash geopolymer.” Constr. Build. Mater. 144 (Jul): 624–634. https://doi.org/10.1016/j.conbuildmat.2017.03.243.
Hu, G., J. Li, and G. Zeng. 2013. “Recent development in the treatment of oily sludge from petroleum industry: A review.” J. Hazard. Mater. 261 (Oct): 470–490. https://doi.org/10.1016/j.jhazmat.2013.07.069.
Hu, K., J. Jiang, Q. Zhao, D. Lee, K. Wang, and W. Qiu. 2011. “Conditioning of wastewater sludge using freezing and thawing: Role of curing.” Water Res. 45 (18): 5969–5976. https://doi.org/10.1016/j.watres.2011.08.064.
Jordán, M. M., M. B. Almendro-Candel, M. Romero, and J. M. Rincón. 2005. “Application of sewage sludge in the manufacturing of ceramic tile bodies.” Appl. Clay Sci. 30 (3–4): 219–224. https://doi.org/10.1016/j.clay.2005.05.001.
Kacprzak, M., E. Neczaj, K. Fijałkowski, A. Grobelak, A. Grosser, M. Worwag, A. Rorat, H. Brattebo, A. Almås, and B. R. Singh. 2017. “Sewage sludge disposal strategies for sustainable development.” Environ. Res. 156 (Jul): 39–46. https://doi.org/10.1016/j.envres.2017.03.010.
Karimi, Y., and A. Monshi. 2011. “Effect of magnesium chloride concentrations on the properties of magnesium oxychloride cement for nano SiC composite purposes.” Ceram. Int. 37 (7): 2405–2410. https://doi.org/10.1016/j.ceramint.2011.05.082.
Kundu, S., and A. K. Gupta. 2008. “Immobilization and leaching characteristics of arsenic from cement and/or lime solidified/stabilized spent adsorbent containing arsenic.” J. Hazard. Mater. 153 (1–2): 434–443. https://doi.org/10.1016/j.jhazmat.2007.08.073.
Lehrsch, G. A., R. E. Sojka, D. L. Carter, and P. M. Jolley. 1991. “Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter.” Soil Sci. Soc. Am. J. 55 (3): 1401–1406. https://doi.org/10.2136/sssaj1991.03615995005500050033x.
Li, G., Y. Yu, J. Li, Y. Wang, and H. Liu. 2003. “Experimental study on urban refuse/magnesium oxychloride cement compound floor tile.” Cem. Concr. Res. 33 (10): 1663–1668. https://doi.org/10.1016/S0008-8846(03)00136-4.
Li, X., and L. M. Zhang. 2009. “Characterization of dual-structure pore-size distribution of soil.” Can. Geotech. J. 46 (2): 129–141. https://doi.org/10.1139/T08-110.
Li, Y., Z. Li, H. Pei, and H. Yu. 2016. “The influence of FeSO4 and KH2PO4 on the performance of magnesium oxychloride cement.” Constr. Build. Mater. 102 (Jan): 233–238. https://doi.org/10.1016/j.conbuildmat.2015.10.186.
Ma, J., Y. Zhao, J. Wang, and L. Wang. 2010. “Effect of magnesium oxychloride cement on stabilization/solidification of sewage sludge.” Constr. Build. Mater. 24 (1): 79–83. https://doi.org/10.1016/j.conbuildmat.2009.08.011.
Mun, K. J. 2007. “Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete.” Constr. Build. Mater. 21 (7): 1583–1588. https://doi.org/10.1016/j.conbuildmat.2005.09.009.
Osula, D. O. A. 1996. “A comparative evaluation of cement and lime modification of laterite.” Eng. Geol. 42 (1): 71–81. https://doi.org/10.1016/0013-7952(95)00067-4.
Raheem, A., V. S. Sikarwar, J. He, W. Dastyar, D. D. Dionysiou, W. Wang, and M. Zhao. 2018. “Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review.” Chem. Eng. J. 337 (Apr): 616–641. https://doi.org/10.1016/j.cej.2017.12.149.
Ruan, S., and C. Unluer. 2016. “Comparative life cycle assessment of reactive MgO and portland cement production.” J. Cleaner Prod. 137 (Nov): 258–273. https://doi.org/10.1016/j.jclepro.2016.07.071.
Smol, M., J. Kulczycka, A. Henclik, K. Gorazda, and Z. Wzorek. 2015. “The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy.” J. Cleaner Prod. 95 (May): 45–54. https://doi.org/10.1016/j.jclepro.2015.02.051.
Stasta, P., J. Boran, L. Bebar, P. Stehlik, and J. Oral. 2006. “Thermal processing of sewage sludge.” Appl. Therm. Eng. 26 (13): 1420–1426. https://doi.org/10.1016/j.applthermaleng.2005.05.030.
Taki, K., S. Choudhary, S. Gupta, and M. Kumar. 2020. “Enhancement of geotechnical properties of municipal sewage sludge for sustainable utilization as engineering construction material.” J. Cleaner Prod. 251 (Apr): 119723. https://doi.org/10.1016/j.jclepro.2019.119723.
Tyagi, V. K., and S. L. Lo. 2013. “Sludge: A waste or renewable source for energy and resources recovery?” Renewable Sustainable Energy Rev. 25 (Sep): 708–728. https://doi.org/10.1016/j.rser.2013.05.029.
Walling, S. A., and J. L. Provis. 2016. “Magnesia-based cements: A journey of 150 years, and cements for the future?” Chem. Rev. 116 (5): 4170–4204. https://doi.org/10.1021/acs.chemrev.5b00463.
Wang, D., N. E. Abriak, and R. Zentar. 2013. “Strength and deformation properties of Dunkirk marine sediments solidified with cement, lime and fly ash.” Eng. Geol. 166 (Nov): 90–99. https://doi.org/10.1016/j.enggeo.2013.09.007.
Wang, D., M. Benzerzour, X. Hu, B. Huang, Z. Chen, and X. Xu. 2020a. “Strength, permeability, and micromechanisms of industrial residue magnesium oxychloride cement solidified slurry.” Int. J. Geomech. 20 (7): 04020088. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001690.
Wang, D., S. Di, X. Gao, R. Wang, and Z. Chen. 2020b. “Strength properties and associated mechanisms of magnesium oxychloride cement-solidified urban river sludge.” Constr. Build. Mater. 250 (Jul): 118933. https://doi.org/10.1016/j.conbuildmat.2020.118933.
Wang, D., Y. Du, and J. Xiao. 2019a. “Shear properties of stabilized loess using novel reactive magnesia-bearing binders.” J. Mater. Civ. Eng. 31 (5): 04019039. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002662.
Wang, D., X. Gao, R. Wang, S. Larsson, and M. Benzerzour. 2020c. “Elevated curing temperature-associated strength and mechanisms of reactive MgO-activated industrial by-products solidified soils.” Mar. Georesour. Geotech. 38 (6): 659–671. https://doi.org/10.1080/1064119X.2019.1610817.
Wang, D., R. Wang, M. Benzerzour, H. Wang, and N. E. Abriak. 2020d. “Comparison between reactive MgO-and Na2SO4-activated low-calcium fly ash solidified soils dredged from East Lake, China.” Mar. Georesour. Geotech. 38 (9): 1046–1055. https://doi.org/10.1080/1064119X.2019.1648616.
Wang, D., J. Xiao, F. He, and Y. Zhou. 2019b. “Durability evolution and associated micro-mechanisms of carbonated reactive MgO-fly ash solidified sludge from East Lake, China.” Constr. Build. Mater. 208 (Feb): 1–12. https://doi.org/10.1016/j.conbuildmat.2019.02.173.
Wang, L., L. Chen, D. C. W. Tsang, J. S. Li, K. Baek, D. Hou, S. Ding, and C. S. Poon. 2018. “Recycling dredged sediment into fill materials, partition blocks, and paving blocks: Technical and economic assessment.” J. Cleaner Prod. 199 (7): 69–76. https://doi.org/10.1016/j.jclepro.2018.07.165.
Wei, M., Y. Du, K. R. Reddy, and H. Wu. 2015. “Effects of freeze–thaw on characteristics of new KMP binder stabilized Zn- and Pb-contaminated soils.” Environ. Sci. Pollut. Res. Int. 22 (24): 19473–19484. https://doi.org/10.1007/s11356-015-5133-z.
Wu, J., H. Chen, B. Guan, Y. Xia, Y. Sheng, and J. Fang. 2019. “Effect of fly ash on rheological properties of magnesium oxychloride cement.” J. Mater. Civ. Eng. 31 (3): 04018405. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002597.
Xu, B., H. Ma, C. Hu, S. Yang, and Z. Li. 2016. “Influence of curing regimes on mechanical properties of magnesium oxychloride cement-based composites.” Constr. Build. Mater. 102 (10): 613–619. https://doi.org/10.1016/j.conbuildmat.2015.10.205.
Ye, Q., Y. Han, S. Zhang, Q. Gao, W. Zhang, H. Chen, S. Gong, S. Q. Shi, C. Xia, and J. Li. 2020. “Bioinspired and biomineralized magnesium oxychloride cement with enhanced compressive strength and water resistance.” J. Hazard. Mater. 383 (12): 121099. https://doi.org/10.1016/j.jhazmat.2019.121099.
Zentar, R., D. Wang, N. E. Abriak, M. Benzerzour, and W. Chen. 2012. “Utilization of siliceous-aluminous fly ash and cement for solidification of marine sediments.” Constr. Build. Mater. 35 (Oct): 856–863. https://doi.org/10.1016/j.conbuildmat.2012.04.024.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 12December 2022

History

Received: Sep 21, 2021
Accepted: Mar 15, 2022
Published online: Sep 16, 2022
Published in print: Dec 1, 2022
Discussion open until: Feb 16, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, School of Civil Engineering, Wuhan Univ., 8 Dong Hu South Rd., Wuhan 430072, China (corresponding author). ORCID: https://orcid.org/0000-0001-9935-6442. Email: [email protected]
Zhengguang Chen [email protected]
Master’s Student, Bachelor of Science, Key Laboratory of Geotechnical and Structural Engineering Safety of Hubei Province, School of Civil Engineering, Wuhan Univ., Wuhan 430072, China. Email: [email protected]
Xiangyun Gao [email protected]
Master’s Student, Bachelor of Science, Key Laboratory of Geotechnical and Structural Engineering Safety of Hubei Province, School of Civil Engineering, Wuhan Univ., Wuhan 430072, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • A Review of the Environmental Benefits of Using Wood Waste and Magnesium Oxychloride Cement as a Composite Building Material, Materials, 10.3390/ma16051944, 16, 5, (1944), (2023).
  • High-efficiency stabilization of dredged sediment using nano-modified and chemical-activated binary cement, Journal of Rock Mechanics and Geotechnical Engineering, 10.1016/j.jrmge.2022.12.007, (2023).
  • Optimization of synergy between cement, slag, and phosphogypsum for marine soft clay solidification, Construction and Building Materials, 10.1016/j.conbuildmat.2023.130902, 374, (130902), (2023).
  • Strength improvement and micromechanism of inorganic/organic additive-modified magnesium oxychloride cement solidified sludge, Construction and Building Materials, 10.1016/j.conbuildmat.2022.130159, 366, (130159), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share