Abstract

The mechanical performance of cementitious materials can be improved by incorporating carbon nanotubes (CNTs). Nevertheless, some challenges must be overcome, such as reducing the agglomeration trend of CNTs and minimizing their negative effect on the fresh state of the cementitious matrices. In this study, early-age portland cement (PC) hydration and the rheological behavior of cementitious composites with nonsilanized, 3-aminopropyltriethoxysilane (APTES)-functionalized CNTs were investigated. The APTES-functionalized CNTs were incorporated into PC pastes in contents of 0.05% and 0.1% by cement weight. The rotational rheometry of the CNT cementitious composites was carried out during the first hour of hydration. The effect of CNT silanization on cement hydration was assessed using isothermal calorimetry and in situ X-ray diffraction (XRD) for 48 h. The functionalization of CNTs with APTES offset the negative effect of nonsilanized CNTs on the fresh properties of the cementitious matrix, reducing the dynamic yield stress up to 39%. Calorimetry and in situ XRD results revealed that nonsilanized CNTs hindered early cement hydration, while the APTES-treated CNTs allowed proper hydration. At 28 days, the XRD and thermogravimetric analysis (TGA) results indicated that nonsilanized and silane-treated CNTs showed an equivalent hydration degree compared to the plain cement paste. Overall, CNT silanization improved the early age performance of cement pastes, enhanced the fresh properties of cement pastes, and did not affect the early hydration of PC.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

National Council for Scientific and Technological Development (CNPq), Santa Catarina Research Foundation (FAPESC), and Coordination for the Improvement of Higher Education Personnel (CAPES) are acknowledged for providing financial support for this research. LabMat (UFSC) and Ms. Patrícia Prates are acknowledged for the SEM analysis. X-Ray Diffraction Laboratory (LDRX-UFSC) is acknowledged for in situ XRD analysis. LCME (UFSC) is acknowledged for TEM analysis. The authors are also grateful to the Central de Análises of the Chemistry Department for the TGA analysis. Paulo de Matos (UFSM) is acknowledged for his assistance in rheology and in situ XRD analyses.

References

Adu-Amankwah, S., M. Zajac, C. Stabler, B. Lothenbach, and L. Black. 2017. “Influence of limestone on the hydration of ternary slag cements.” Cem. Concr. Res. 100 (Jun): 96–109. https://doi.org/10.1016/j.cemconres.2017.05.013.
Ahmed, H., J. A. Bogas, M. Guedes, and M. F. C. Pereira. 2019. “Dispersion and reinforcement efficiency of carbon nanotubes in cementitious composites.” Mag. Concr. Res. 71 (8): 408–423. https://doi.org/10.1680/jmacr.17.00562.
Alatawna, A., M. Birenboim, R. Nadiv, M. Buzaglo, S. Peretz-Damari, A. Peled, O. Regev, and R. Sripada. 2020. “The effect of compatibility and dimensionality of carbon nanofillers on cement composites.” Constr. Build. Mater. 232 (Jan): 117141. https://doi.org/10.1016/j.conbuildmat.2019.117141.
Alonso, M. M., M. Palacios, and F. Puertas. 2013. “Compatibility between polycarboxylate-based admixtures and blended-cement pastes.” Cem. Concr. Compos. 35 (1): 151–162. https://doi.org/10.1016/j.cemconcomp.2012.08.020.
Amin, M. S., S. M. A. El-Gamal, and F. S. Hashem. 2015. “Fire resistance and mechanical properties of carbon nanotubes—Clay bricks wastes (Homra) composites cement.” Constr. Build. Mater. 98: 237–249. https://doi.org/10.1016/j.conbuildmat.2015.08.074.
Andrade Neto, J. S., A. G. da De la Torre, and A. P. Kirchheim. 2021a. “Effects of sulfates on the hydration of Portland cement—A review.” Constr. Build. Mater. 279 (Apr): 122428. https://doi.org/10.1016/j.conbuildmat.2021.122428.
Andrade Neto, J. S., T. A. Santos, S. de Andrade Pinto, C. M. R. Dias, and D. V. Ribeiro. 2021b. “Effect of the combined use of carbon nanotubes (CNT) and metakaolin on the properties of cementitious matrices.” Constr. Build. Mater. 271 (Feb): 121903. https://doi.org/10.1016/j.conbuildmat.2020.121903.
Arrechea, S., E. M. A. Guerrero-Gutiérrez, L. Velásquez, J. Cardona, R. Posadas, K. Callejas, S. Torres, R. Díaz, C. Barrientos, and E. García. 2020. “Effect of additions of multiwall carbon nanotubes (MWCNT, MWCNT-COOH and MWCNT-Thiazol) in mechanical compression properties of a cement-based material.” Materialia 11 (May): 100739. https://doi.org/10.1016/j.mtla.2020.100739.
Azevedo, A., P. De Matos, M. Marvila, R. Sakata, L. Silvestro, P. Gleize, and J. De Brito. 2021a. “Rheology, hydration, and microstructure of portland cement pastes produced with ground açaí fibers.” Appl. Sci. (Switzerland) 11 (7): 1–14. https://doi.org/10.3390/app11073036.
Azevedo, N. H., P. R. de Matos, P. J. P. Gleize, and A. M. Betiol. 2021b. “Effect of thermal treatment of SiC nanowhiskers on rheological, hydration, mechanical and microstructure properties of Portland cement pastes.” Cem. Concr. Compos. 117 (Dec): 103903. https://doi.org/10.1016/j.cemconcomp.2020.103903.
Bergold, S. T., F. Goetz-Neunhoeffer, and J. Neubauer. 2013. “Quantitative analysis of C─ S─ H in hydrating alite pastes by in-situ XRD.” Cem. Concr. Res. 53 (Nov): 119–126. https://doi.org/10.1016/j.cemconres.2013.06.001.
Bullard, J. W., H. M. Jennings, R. A. Livingston, A. Nonat, G. W. Scherer, J. S. Schweitzer, K. L. Scrivener, and J. J. Thomas. 2011. “Mechanisms of cement hydration.” Cem. Concr. Res. 41 (12): 1208–1223. https://doi.org/10.1016/j.cemconres.2010.09.011.
Casagrande, C. A., L. F. Jochem, L. Onghero, P. Ricardo de Matos, W. L. Repette, and P. J. P. Gleize. 2020. “Effect of partial substitution of superplasticizer by silanes in Portland cement pastes.” J. Build. Eng. 29 (Dec): 101226. https://doi.org/10.1016/j.jobe.2020.101226.
Chen, M., B. Liu, L. Li, L. Cao, Y. Huang, S. Wang, P. Zhao, L. Lu, and X. Cheng. 2020. “Rheological parameters, thixotropy and creep of 3D-printed calcium sulfoaluminate cement composites modified by bentonite.” Composites, Part B 186 (Jan): 107821. https://doi.org/10.1016/j.compositesb.2020.107821.
Collodetti, G., P. J. P. Gleize, and P. J. M. Monteiro. 2014. “Exploring the potential of siloxane surface modified nano-SiO2 to improve the portland cement pastes hydration properties.” Constr. Build. Mater. 54 (Mar): 99–105. https://doi.org/10.1016/j.conbuildmat.2013.12.028.
Cui, H., X. Yan, M. Monasterio, and F. Xing. 2017. “Effects of various surfactants on the dispersion of MWCNTs–OH in aqueous solution.” Nanomaterials (Basel) 7 (9): 262. https://doi.org/10.3390/nano7090262.
Daza, L. M., A. M. Percebom, and A. Pérez-Gramatges. 2020. “Polymer-coated cationic silica nanoparticles for slow-release Pickering emulsions.” Colloid. Polym. Sci. 298 (6): 559–568. https://doi.org/10.1007/s00396-020-04639-y.
de Matos, P. R., J. S. Andrade Neto, and C. E. M. Campos. 2021a. “Is the R index accurate to assess the preferred orientation of portlandite in cement pastes?” Constr. Build. Mater. 292 (Jul): 123471. https://doi.org/10.1016/j.conbuildmat.2021.123471.
de Matos, P. R., R. D. Sakata, L. Onghero, V. G. Uliano, J. de Brito, C. E. M. Campos, and P. J. P. Gleize. 2021b. “Utilization of ceramic tile demolition waste as supplementary cementitious material: An early-age investigation.” J. Build. Eng. 38 (Dec): 102187. https://doi.org/10.1016/j.jobe.2021.102187.
De Siqueira, J. E. L., and P. J. P. Gleize. 2020. “Effect of carbon nanotubes sonication on mechanical properties of cement pastes.” Revista IBRACON de Estruturas e Materiais 13 (2): 455–463. https://doi.org/10.1590/s1983-41952020000200013.
Farooq, F., A. Akbar, R. A. Khushnood, W. L. B. Muhammad, S. K. U. Rehman, and M. F. Javed. 2020. “Experimental investigation of hybrid carbon nanotubes and graphite nanoplatelets on rheology, shrinkage, mechanical, and microstructure of SCCM.” Materials (Basel) 13 (1): 230. https://doi.org/10.3390/ma13010230.
Feng, H., H. T. N. Le, S. Wang, and M. H. Zhang. 2016. “Effects of silanes and silane derivatives on cement hydration and mechanical properties of mortars.” Constr. Build. Mater. 129 (Dec): 48–60. https://doi.org/10.1016/j.conbuildmat.2016.11.004.
Feng, J., F. Yang, and S. Qian. 2021. “Improving the bond between polypropylene fiber and cement matrix by nano calcium carbonate modification.” Constr. Build. Mater. 269 (Feb): 121249. https://doi.org/10.1016/j.conbuildmat.2020.121249.
Guo, L., J. Wu, and H. Wang. 2020. “Mechanical and perceptual characterization of ultra-high-performance cement-based composites with silane-treated graphene nano-platelets.” Constr. Build. Mater. 240 (Apr): 117926. https://doi.org/10.1016/j.conbuildmat.2019.117926.
He, Y., X. Zhang, L. Shui, Y. Wang, M. Gu, X. Wang, H. Wang, and L. Peng. 2019. “Effects of PCEs with various carboxylic densities and functional groups on the fluidity and hydration performances of cement paste.” Constr. Build. Mater. 202 (Mar): 656–668. https://doi.org/10.1016/j.conbuildmat.2018.12.216.
Indukuri, C. S. R., R. Nerella, and S. R. C. Madduru. 2019. “Effect of graphene oxide on microstructure and strengthened properties of fly ash and silica fume based cement composites.” Constr. Build. Mater. 229 (Dec): 116863. https://doi.org/10.1016/j.conbuildmat.2019.116863.
Isfahani, F. T., W. Li, and E. Redaelli. 2016. “Dispersion of multi-walled carbon nanotubes and its effects on the properties of cement composites.” Cem. Concr. Compos. 74 (Nov): 154–163. https://doi.org/10.1016/j.cemconcomp.2016.09.007.
Jiang, S., B. Shan, J. Ouyang, W. Zhang, X. Yu, P. Li, and B. Han. 2018. “Rheological properties of cementitious composites with nano/fiber fillers.” Constr. Build. Mater. 158 (Jan): 786–800. https://doi.org/10.1016/j.conbuildmat.2017.10.072.
Jiao, D., C. Shi, and Q. Yuan. 2018. “Influences of shear-mixing rate and fly ash on rheological behavior of cement pastes under continuous mixing.” Constr. Build. Mater. 188 (Nov): 170–177. https://doi.org/10.1016/j.conbuildmat.2018.08.091.
Jindal, B. B., and R. Sharma. 2020. “The effect of nanomaterials on properties of geopolymers derived from industrial by-products: A state-of-the-art review.” Constr. Build. Mater. 252 (Aug): 119028. https://doi.org/10.1016/j.conbuildmat.2020.119028.
Jing, G., J. Wu, T. Lei, S. Wang, V. Strokova, V. Nelyubova, M. Wang, and Z. Ye. 2020. “From graphene oxide to reduced graphene oxide: Enhanced hydration and compressive strength of cement composites.” Constr. Build. Mater. 248 (Jul): 118699. https://doi.org/10.1016/j.conbuildmat.2020.118699.
Kang, S. T., J. Y. Seo, and S. H. Park. 2015. “The characteristics of CNT/Cement composites with acid-treated MWCNTs.” Adv. Mater. Sci. Eng. 2015: 1–9. https://doi.org/10.1155/2015/308725.
Kantro, D. L. 1980. “Influence of water-reducing admixtures on properties of cement paste—A miniature slump test.” Cem. Concr. Aggregates 2 (2): 95–102. https://doi.org/10.1520/CCA10190J.
Kathi, J., K. Y. Rhee, and J. H. Lee. 2009. “Effect of chemical functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane on mechanical and morphological properties of epoxy nanocomposites.” Composites, Part A 40 (6–7): 800–809. https://doi.org/10.1016/j.compositesa.2009.04.001.
Kim, G. M., H. N. Yoon, and H. K. Lee. 2018. “Autogenous shrinkage and electrical characteristics of cement pastes and mortars with carbon nanotube and carbon fiber.” Constr. Build. Mater. 177 (Jul): 428–435. https://doi.org/10.1016/j.conbuildmat.2018.05.127.
Kong, D., H. Pan, L. Wang, D. J. Corr, Y. Yang, S. P. Shah, and J. Sheng. 2019. “Effect and mechanism of colloidal silica sol on properties and microstructure of the hardened cement-based materials as compared to nano-silica powder with agglomerates in micron-scale.” Cem. Concr. Compos. 98 (Sep): 137–149. https://doi.org/10.1016/j.cemconcomp.2019.02.015.
Kong, F., L. Pan, C. Wang, D. Zhang, and N. Xu. 2016. “Effects of polycarboxylate superplasticizers with different molecular structure on the hydration behavior of cement paste.” Constr. Build. Mater. 105 (Feb): 545–553. https://doi.org/10.1016/j.conbuildmat.2015.12.178.
Kong, X. M., H. Liu, Z. B. Lu, and D. M. Wang. 2015. “The influence of silanes on hydration and strength development of cementitious systems.” Cem. Concr. Res. 67 (Jan): 168–178. https://doi.org/10.1016/j.cemconres.2014.10.008.
Kooshafar, M., and H. Madani. 2020. “An investigation on the influence of nano silica morphology on the characteristics of cement composites.” J. Build. Eng. 30 (Sep): 101293. https://doi.org/10.1016/j.jobe.2020.101293.
Li, Z., D. J. Corr, B. Han, and S. P. Shah. 2020. “Investigating the effect of carbon nanotube on early age hydration of cementitious composites with isothermal calorimetry and Fourier transform infrared spectroscopy.” Cem. Concr. Compos. 107 (Jun): 103513. https://doi.org/10.1016/j.cemconcomp.2020.103513.
Liu, R., C. Zhang, Y. Pei, M. Chen, H. Liu, and X. Li. 2021. “Influence of flocculation effect on the apparent viscosity of cement slurry and analysis of different influencing factors.” Constr. Build. Mater. 281 (Apr): 122602. https://doi.org/10.1016/j.conbuildmat.2021.122602.
Ma, P. C., J. K. Kim, and B. Z. Tang. 2007. “Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites.” Compos. Sci. Technol. 67 (14): 2965–2972. https://doi.org/10.1016/j.compscitech.2007.05.006.
Ma, P. C., N. A. Siddiqui, G. Marom, and J. K. Kim. 2010. “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review.” Composites, Part A 41 (10): 1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003.
Ma, S., Y. Qian, and S. Kawashima. 2018. “Performance-based study on the rheological and hardened properties of blended cement mortars incorporating palygorskite clays and carbon nanotubes.” Constr. Build. Mater. 171 (May): 663–671. https://doi.org/10.1016/j.conbuildmat.2018.03.121.
MacLeod, A. J. N., F. G. Collins, and W. Duan. 2021. “Effects of carbon nanotubes on the early-age hydration kinetics of Portland cement using isothermal calorimetry.” Cem. Concr. Compos. 119 (Feb): 103994. https://doi.org/10.1016/j.cemconcomp.2021.103994.
MacLeod, A. J. N., A. Fehervari, W. P. Gates, E. O. Garcez, L. P. Aldridge, and F. Collins. 2020. “Enhancing fresh properties and strength of concrete with a pre-dispersed carbon nanotube liquid admixture.” Constr. Build. Mater. 247 (Jun): 118524. https://doi.org/10.1016/j.conbuildmat.2020.118524.
Makar, J. M., and G. W. Chan. 2009. “Growth of cement hydration products on single-walled carbon nanotubes.” J. Am. Ceram. Soc. 92 (6): 1303–1310. https://doi.org/10.1111/j.1551-2916.2009.03055.x.
Manzur, T., and N. Yazdani. 2015. “Optimum mix ratio for carbon nanotubes in cement mortar.” KSCE J. Civ. Eng. 19 (5): 1405–1412. https://doi.org/10.1007/s12205-014-0721-x.
Mendoza, O., G. Sierra, and J. I. Tobón. 2013. “Influence of super plasticizer and Ca(OH)2 on the stability of functionalized multi-walled carbon nanotubes dispersions for cement composites applications.” Constr. Build. Mater. 47 (Oct): 771–778. https://doi.org/10.1016/j.conbuildmat.2013.05.100.
Musso, S., J. M. Tulliani, G. Ferro, and A. Tagliaferro. 2009. “Influence of carbon nanotubes structure on the mechanical behavior of cement composites.” Compos. Sci. Technol. 69 (11–12): 1985–1990. https://doi.org/10.1016/j.compscitech.2009.05.002.
Nadiv, R., M. Shtein, M. Refaeli, A. Peled, and O. Regev. 2016. “The critical role of nanotube shape in cement composites.” Cem. Concr. Compos. 71 (Aug): 166–174. https://doi.org/10.1016/j.cemconcomp.2016.05.012.
Nasibulina, L. I., I. V. Anoshkin, A. G. Nasibulin, A. Cwirzen, V. Penttala, and E. I. Kauppinen. 2012. “Effect of carbon nanotube aqueous dispersion quality on mechanical properties of cement composite.” J. Nanomater. 2012: 1–6. https://doi.org/10.1155/2012/169262.
Rashad, A. M. 2017. “Effect of carbon nanotubes (CNTs) on the properties of traditional cementitious materials.” Constr. Build. Mater. 153 (Oct): 81–101. https://doi.org/10.1016/j.conbuildmat.2017.07.089.
Reales, O. A. M., Y. P. Arias Jaramillo, J. C. Ochoa Botero, C. A. Delgado, J. H. Quintero, and R. D. Toledo Filho. 2018a. “Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes.” Cem. Concr. Res. 107 (Jan): 101–109. https://doi.org/10.1016/j.cemconres.2018.02.020.
Reales, O. A. M., P. Duda, and R. Dias Toledo Filho. 2018b. “Effect of a carbon nanotube/surfactant aqueous dispersion on the rheological and mechanical properties of portland cement pastes.” J. Mater. Civ. Eng. 30 (10): 04018259. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002452.
Rong, Z., M. Zhao, and Y. Wang. 2020. “Effects of modified nano-SiO2 particles on properties of high-performance cement-based composites.” Materials (Basel) 13 (3): 646. https://doi.org/10.3390/ma13030646.
Roussel, N. 2011. Understanding the rheology of concrete. Cambridge, UK: Woodhead Publishing.
Roussel, N., G. Ovarlez, S. Garrault, and C. Brumaud. 2012. “Cement and concrete research the origins of thixotropy of fresh cement pastes.” Cem. Concr. Res. 42 (1): 148–157. https://doi.org/10.1016/j.cemconres.2011.09.004.
Salih, A., S. Rafiq, W. Mahmood, H. AL-Darkazali, R. Noaman, K. Ghafor, and W. Qadir. 2020. “Systemic multi-scale approaches to predict the flowability at various temperature and mechanical properties of cement paste modified with nano-calcium carbonate.” Constr. Build. Mater. 262 (Nov): 120777. https://doi.org/10.1016/j.conbuildmat.2020.120777.
Scheibe, B., E. Borowiak-Palen, and R. J. Kalenczuk. 2010. “Enhancement of thermal stability of multiwalled carbon nanotubes via different silanization routes.” J. Alloys Compd. 500 (1): 117–124. https://doi.org/10.1016/j.jallcom.2010.03.229.
Scrivener, K., R. Snellings, and B. Lothenbach. 2018. A practical guide to microstructural analysis of cementitious materials. New Yrok: Taylor & Francis.
Scrivener, K. L., T. Füllmann, E. Gallucci, G. Walenta, and E. Bermejo. 2004. “Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods.” Cem. Concr. Res. 34 (9): 1541–1547. https://doi.org/10.1016/j.cemconres.2004.04.014.
Scrivener, K. L., P. Juilland, and P. J. M. Monteiro. 2015. “Advances in understanding hydration of Portland cement.” Cem. Concr. Res. 78 (Dec): 38–56. https://doi.org/10.1016/j.cemconres.2015.05.025.
Sikora, P., M. Abd Elrahman, S. Y. Chung, K. Cendrowski, E. Mijowska, and D. Stephan. 2019. “Mechanical and microstructural properties of cement pastes containing carbon nanotubes and carbon nanotube-silica core-shell structures, exposed to elevated temperature.” Cem. Concr. Compos. 95 (Aug): 193–204. https://doi.org/10.1016/j.cemconcomp.2018.11.006.
Silvestro, L., and P. J. P. Gleize. 2020. “Effect of carbon nanotubes on compressive, flexural and tensile strengths of Portland cement-based materials: A systematic literature review.” Constr. Build. Mater. 264 (Dec): 120237. https://doi.org/10.1016/j.conbuildmat.2020.120237.
Silvestro, L., A. Ruviaro, G. Lima, P. de Matos, A. R. G. de Azevedo, S. N. Monteiro, and P. Gleize. 2021a. “Influence of ultrasonication of functionalized carbon nanotubes on the rheology, hydration, and compressive strength of portland cement pastes.” Materials (Basel) 14 (18): 5248. https://doi.org/10.3390/ma14185248.
Silvestro, L., A. S. Ruviaro, P. R. de Matos, F. Pelisser, D. Z. Mezalira, and P. J. P. Gleize. 2021b. “Functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane for application in cementitious matrix.” Constr. Build. Mater. 311 (Dec): 125358. https://doi.org/10.1016/j.conbuildmat.2021.125358.
Skripkiunas, G., E. Karpova, I. Barauskas, J. Bendoraitiene, and G. Yakovlev. 2018. “Rheological properties of cement pastes with multiwalled carbon nanotubes.” Adv. Mater. Sci. Eng. 2018: 1–13. https://doi.org/10.1155/2018/8963542.
Skripkiunas, G., E. Karpova, J. Bendoraitiene, and I. Barauskas. 2020. “Rheological properties and flow behaviour of cement-based materials modified by carbon.” Fluids 5 (4): 169. https://doi.org/10.3390/fluids5040169.
Snellings, R., et al. 2018. “Report of TC 238-SCM: Hydration stoppage methods for phase assemblage studies of blended cements—Results of a round robin test.” Mater. Struct. 51: 111. https://doi.org/10.1617/s11527-018-1237-5.
Song, C., G. Hong, and S. Choi. 2020. “Effect of dispersibility of carbon nanotubes by silica fume on material properties of cement mortars: Hydration, pore structure, mechanical properties, self-desiccation, and autogenous shrinkage.” Constr. Build. Mater. 265 (Dec): 120318. https://doi.org/10.1016/j.conbuildmat.2020.120318.
Tafesse, M., and H. K. Kim. 2019. “The role of carbon nanotube on hydration kinetics and shrinkage of cement composite.” Composites, Part B 169 (Mar): 55–64. https://doi.org/10.1016/j.compositesb.2019.04.004.
Tian, S., W. Gao, Y. Liu, W. Kang, and H. Yang. 2020. “Effects of surface modification Nano-SiO2 and its combination with surfactant on interfacial tension and emulsion stability.” Colloids Surf., A 595 (Jan): 124682. https://doi.org/10.1016/j.colsurfa.2020.124682.
Tobón, J. I., J. J. Payá, M. V. Borrachero, and O. J. Restrepo. 2012. “Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength.” Constr. Build. Mater. 36 (Nov): 736–742. https://doi.org/10.1016/j.conbuildmat.2012.06.043.
Vasconcellos, J. S., G. L. O. Martins, G. de Almeida Ribeiro Oliveira, L. M. Lião, J. H. da Silva Rêgo, and P. P. C. Sartoratto. 2020. “Effect of amine functionalized nanosilica on the cement hydration and on the physical-mechanical properties of Portland cement pastes.” J. Nanopart. Res. 22 (8): 1–3. https://doi.org/10.1007/s11051-020-04940-5.
Yang, J., W. She, W. Zuo, K. lyu, and Q. Zhang. 2021. “Rational application of nano-SiO2 in cement paste incorporated with silane: Counterbalancing and synergistic effects.” Cem. Concr. Compos. 118 (Feb): 103959. https://doi.org/10.1016/j.cemconcomp.2021.103959.
Yu, M. F., O. Lourie, M. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff. 2000. “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load.” Science 287 (5453): 637–640. https://doi.org/10.1126/science.287.5453.637.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 8August 2022

History

Received: Sep 8, 2021
Accepted: Dec 9, 2021
Published online: May 24, 2022
Published in print: Aug 1, 2022
Discussion open until: Oct 24, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Laboratório de Aplicações de Nanotecnologia em Construção Civil (LabNANOTEC), Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 151, Florianópolis 88040-900, Brasil (corresponding author). ORCID: https://orcid.org/0000-0002-6437-3047. Email: [email protected]
Ph.D. Student, Laboratório de Valorização de Resíduos (ValoRes), Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 151, Florianópolis 88040-900, Brasil. ORCID: https://orcid.org/0000-0002-0834-8453. Email: [email protected]
Artur Spat Ruviaro [email protected]
Ph.D. Student, Laboratório de Aplicações de Nanotecnologia em Construção Civil (LabNANOTEC), Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 151, Florianópolis 88040-900, Brasil. Email: [email protected]
Professor, Dept. de Química, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 151, Florianópolis 88040-900, Brasil. ORCID: https://orcid.org/0000-0002-7535-5784. Email: [email protected]
Professor, Laboratório de Aplicações de Nanotecnologia em Construção Civil (LabNANOTEC), Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 151, Florianópolis 88040-900, Brasil. ORCID: https://orcid.org/0000-0003-4029-9345. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Influence of Nanosilica and Superplasticizer Incorporation on the Hydration, Strength, and Microstructure of Calcium Sulfoaluminate Cement Pastes, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-15570, 35, 7, (2023).
  • Evaluation of CNTs and SiC Whiskers Effect on the Rheology and Mechanical Performance of Metakaolin-Based Geopolymers, Materials, 10.3390/ma15176099, 15, 17, (6099), (2022).
  • Stability of Carboxyl-Functionalized Carbon Nanotubes in Simulated Cement Pore Solution and Its Effect on the Compressive Strength and Porosity of Cement-Based Nanocomposites, C, 10.3390/c8030039, 8, 3, (39), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share