Technical Papers
Feb 23, 2022

Fabrication and Performance of Microencapsulated Phase-Change Material/Gypsum Plaster Tile for Thermal Energy–Storage Building Material

Publication: Journal of Materials in Civil Engineering
Volume 34, Issue 5

Abstract

In this work, microencapsulated phase change material (MEPCM) with the eutectic mixture of stearic acid (SA) and coconut oil (CO) as the core and melamine formaldehyde (MF) as the shell was developed by emulsion-polymerization method to be applied in the gypsum plaster tile as a passive way for thermal energy storage (TES) applications. Thermal and chemical characterization, particle size distribution (PSD), and thermal resistance of the developed MEPCM were investigated. The effects of adding MEPCM on thermal conductivity, density, and mechanical strength of gypsum plaster tile were reported. The results indicated an optimum eutectic combination ratio of 20%–80% by weight of SA-CO, MF concentrations of 75% by weight with 73.5% encapsulation efficiency for the synthesized MEPCM, phase change temperature of 21°C to 28.6°C and TES of 35.04  J/g. The reliability and thermal stability of the produced MEPCM was proved and implied no degradation in the chemical structure of MEPCM after repeated melting and solidification processes due to protection of core materials by MF shell. The gypsum/MEPCM composite resulted acceptable mechanical strength with thermal conductivity of 0.33 W/(m · K) and density of 919  kg/m3. The calculated extent of thermal energy storage for the simulated room that covered with G/M33 with 10% by weight of MEPCM in the interior walls and roof showed about 12% reduction in energy consumption.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Akeiber, H., P. Nejat, M. Z. A. Majid, M. A. Wahid, F. Jomehzadeh, I. Z. Famileh, J. K. Calautit, B. R. Hughes, and S. A. Zaki. 2016. “A review on phase change material (PCM) for sustainable passive cooling in building envelopes.” Renewable Sustainable Energy Rev. 60 (Jul): 1470–1497. https://doi.org/10.1016/j.rser.2016.03.036.
Alva, G., X. Huang, L. Liu, and G. Fang. 2017. “Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage.” Appl. Energy 203 (Oct): 677–685. https://doi.org/10.1016/j.apenergy.2017.06.082.
Bajare, D., J. Kazjonovs, and A. Korjakins. 2011. “The thermal characteristics of gypsum boards with phase change materials (PCM).” In Vol. 2 of Proc., Environment, Technology, Resources: Proceedings of the Int. Scientific and Practical Conf., 132–138. Rēzekne, Latvia: Univ. of Rezekne.
Borreguero, A. M., M. Luz Sánchez, J. L. Valverde, M. Carmona, and J. F. Rodríguez. 2011a. “Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content.” Appl. Energy 88 (3): 930–937. https://doi.org/10.1016/j.apenergy.2010.08.014.
Borreguero, A. M., J. L. Valverde, J. F. Rodríguez, A. H. Barber, J. J. Cubillo, and M. Carmona. 2011b. “Synthesis and characterization of microcapsules containing Rubitherm RT27 obtained by spray drying.” Chem. Eng. J. 166 (1): 384–390. https://doi.org/10.1016/j.cej.2010.10.055.
Cao, F., and B. Yang. 2014. “Supercooling suppression of microencapsulated phase change materials by optimizing shell composition and structure.” Appl. Energy 113 (Jan): 1512–1518. https://doi.org/10.1016/j.apenergy.2013.08.048.
CEN (European Committee for Standardization). 2014. Gypsum binders and gypsum plasters. BS-EN-13279-2: 2014. Brussels, Belgium: CEN.
Chandler, H. 1999. Hardness testing. Materials Park, OH: ASM International.
Chen, Z., L. Cao, F. Shan, and G. Fang. 2013. “Preparation and characteristics of microencapsulated stearic acid as composite thermal energy storage material in buildings.” Energy Build. 62 (Jul): 469–474. https://doi.org/10.1016/j.enbuild.2013.03.025.
Chen, Z.-H., F. Yu, X.-R. Zeng, and Z.-G. Zhang. 2012. “Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier.” Appl. Energy 91 (1): 7–12. https://doi.org/10.1016/j.apenergy.2011.08.041.
Dai, X., and W. Yuan. 2016. “Preparation and characterisation of double-shell n-octadecane phase change material encapsulation.” Mater. Res. Innovations 20 (6): 433–438. https://doi.org/10.1080/14328917.2015.1131415.
De Gracia, A., and L. F. Cabeza. 2015. “Phase change materials and thermal energy storage for buildings.” Energy Build. 103 (Sep): 414–419. https://doi.org/10.1016/j.enbuild.2015.06.007.
Döğüşcü, D. K., A. Altıntaş, A. Sari, and C. Alkan. 2017. “Polystyrene microcapsules with palmitic-capric acid eutectic mixture as building thermal energy storage materials.” Energy Build. 150 (Sep): 376–382. https://doi.org/10.1016/j.enbuild.2017.06.022.
Döğüşcü, D. K., Ç. Kızıl, A. Biçer, A. Sari, and C. Alkan. 2018. “Microencapsulated n-alkane eutectics in polystyrene for solar thermal applications.” Sol. Energy 160 (Jan): 32–42. https://doi.org/10.1016/j.solener.2017.11.072.
Giro-Paloma, J., M. Martínez, L. F. Cabeza, and A. I. Fernández. 2016. “Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review.” Renewable Sustainable Energy Rev. 53 (Jan): 1059–1075. https://doi.org/10.1016/j.rser.2015.09.040.
Jacob, R., and F. Bruno. 2015. “Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage.” Renewable Sustainable Energy Rev. 48 (Aug): 79–87. https://doi.org/10.1016/j.rser.2015.03.038.
Jamekhorshid, A., S. M. Sadrameli, and M. Farid. 2014. “A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium.” Renewable Sustainable Energy Rev. 31 (Mar): 531–542. https://doi.org/10.1016/j.rser.2013.12.033.
Kenisarin, M., and K. Mahkamov. 2007. “Solar energy storage using phase change materials.” Renewable Sustainable Energy Rev. 11 (9): 1913–1965. https://doi.org/10.1016/j.rser.2006.05.005.
Khamooshi, A., and E. Najafi Kani. 2019. “Development of a phase-change material for heat storage in gypsum-based building materials.” Proc. Inst. Civ. Eng. Energy 172 (2): 79–88. https://doi.org/10.1680/jener.17.00028.
Khin, M. 2003. “Encapsulation of phase change materials (PCMS) for heat storage.” Ph.D. dissertation, Dept. of Mechanical Engineering, National Univ. of Singapore.
Kong, M., J. L. Alvarado, C. Thies, S. Morefield, and C. P. Marsh. 2017. “Field evaluation of microencapsulated phase change material slurry in ground source heat pump systems.” Energy 122 (Mar): 691–700. https://doi.org/10.1016/j.energy.2016.12.092.
Konuklu, Y., M. Unal, and H. O. Paksoy. 2014. “Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage.” Sol. Energy Mater. Sol. Cells 120 (Jan): 536–542. https://doi.org/10.1016/j.solmat.2013.09.035.
Koschenz, M., and B. Lehmann. 2004. “Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings.” Energy Build. 36 (6): 567–578. https://doi.org/10.1016/j.enbuild.2004.01.029.
Kumar, G. N., B. Al-Aifan, R. Parameshwaran, and V. V. Ram. 2021. “Facile synthesis of microencapsulated 1-dodecanol/melamine-formaldehyde phase change material using in-situ polymerization for thermal energy storage.” Colloids Surf., A 610 (Feb): 125698. https://doi.org/10.1016/j.colsurfa.2020.125698.
Lachheb, M., M. Karkri, and S. B. Nasrallah. 2015. “Development and thermal characterization of an innovative gypsum-based composite incorporating phase change material as building energy storage system.” Energy Build. 107 (Nov): 93–102. https://doi.org/10.1016/j.enbuild.2015.08.002.
Lecompte, T., P. Le Bideau, P. Glouannec, D. Nortershauser, and S. Le Masson. 2015. “Mechanical and thermo-physical behaviour of concretes and mortars containing phase change material.” Energy Build. 94 (May): 52–60. https://doi.org/10.1016/j.enbuild.2015.02.044.
Liang, C., X. Lingling, S. Hongbo, and Z. Zhibin. 2009. “Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system.” Energy Convers. Manage. 50 (3): 723–729. https://doi.org/10.1016/j.enconman.2008.09.044.
Lin, Y., C. Zhu, G. Alva, and G. Fang. 2018. “Microencapsulation and thermal properties of myristic acid with ethyl cellulose shell for thermal energy storage.” Appl. Energy 231 (Dec): 494–501. https://doi.org/10.1016/j.apenergy.2018.09.154.
Liu, W., D. Sun, C. Li, Q. Liu, and J. Xu. 2006. “Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method.” J. Colloid Interface Sci. 303 (2): 557–563. https://doi.org/10.1016/j.jcis.2006.07.055.
Merline, D. J., S. Vukusic, and A. A. Abdala. 2013. “Melamine formaldehyde: Curing studies and reaction mechanism.” Polym. J. 45 (4): 413–419. https://doi.org/10.1038/pj.2012.162.
Mert, M. S., H. H. Mert, and M. Sert. 2019. “Microencapsulated oleic–capric acid/hexadecane mixture as phase change material for thermal energy storage.” J. Therm. Anal. Calorim. 136 (4): 1551–1561. https://doi.org/10.1007/s10973-018-7815-5.
Mondal, S. 2008. “Phase change materials for smart textiles—An overview.” Appl. Therm. Eng. 28 (11–12): 1536–1550. https://doi.org/10.1016/j.applthermaleng.2007.08.009.
Naikwadi, A. T., A. B. Samui, and P. A. Mahanwar. 2020. “Melamine-formaldehyde microencapsulated n-tetracosane phase change material for solar thermal energy storage in coating.” Sol. Energy Mater. Sol. Cells 215 (Sep): 110676. https://doi.org/10.1016/j.solmat.2020.110676.
Nejman, A., and M. Cieślak. 2017. “The impact of the heating/cooling rate on the thermoregulating properties of textile materials modified with PCM microcapsules.” Appl. Therm. Eng. 127 (Dec): 212–223. https://doi.org/10.1016/j.applthermaleng.2017.08.037.
Oliver, A. 2012. “Thermal characterization of gypsum boards with PCM included: Thermal energy storage in buildings through latent heat.” Energy Build. 48 (May): 1–7. https://doi.org/10.1016/j.enbuild.2012.01.026.
Özonur, Y., M. Mazman, H. Ö. Paksoy, and H. Evliya. 2006. “Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material.” Int. J. Energy Res. 30 (10): 741–749. https://doi.org/10.1002/er.1177.
Park, J. H., Y. Kang, J. Lee, S. Wi, J. D. Chang, and S. Kim. 2019. “Analysis of walls of functional gypsum board added with porous material and phase change material to improve hygrothermal performance.” Energy Build. 183 (Jan): 803–816. https://doi.org/10.1016/j.enbuild.2018.11.023.
Ranjbar, S., H. Masoumi, R. Haghighi, and K. Mojtaba. 2020. “Experimental investigation of stability and thermal conductivity of phase change materials containing pristine and functionalized multi-walled carbon nanotubes.” J. Therm. Anal. Calorim. 140 (5): 2505–2518. https://doi.org/10.1007/s10973-019-09005-x.
Sánchez, L., P. Sánchez, M. Carmona, A. de Lucas, and J. F. Rodríguez. 2008. “Influence of operation conditions on the microencapsulation of PCMs by means of suspension-like polymerization.” Colloid Polym. Sci. 286 (8–9): 1019–1027. https://doi.org/10.1007/s00396-008-1864-4.
Sánchez, P., M. V. Sánchez-Fernandez, A. Romero, J. F. Rodríguez, and L. Sánchez-Silva. 2010. “Development of thermo-regulating textiles using paraffin wax microcapsules.” Thermochim. Acta 498 (1–2): 16–21. https://doi.org/10.1016/j.tca.2009.09.005.
Sánchez-Silva, L., J. F. Rodríguez, A. Romero, A. M. Borreguero, M. Carmona, and P. Sánchez. 2010. “Microencapsulation of PCMs with a styrene-methyl methacrylate copolymer shell by suspension-like polymerisation.” Chem. Eng. J. 157 (1): 216–222. https://doi.org/10.1016/j.cej.2009.12.013.
Sari, A., C. Alkan, and A. Altintaş. 2014a. “Preparation, characterization and latent heat thermal energy storage properties of micro-nanoencapsulated fatty acids by polystyrene shell.” Appl. Therm. Eng. 73 (1): 1160–1168. https://doi.org/10.1016/j.applthermaleng.2014.09.005.
Sari, A., C. Alkan, and C. Bilgin. 2014b. “Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties.” Appl. Energy 136 (1): 217–227. https://doi.org/10.1016/j.apenergy.2014.09.047.
Sari, A., C. Alkan, A. Karaipekli, and O. Uzun. 2009. “Microencapsulated n-octacosane as phase change material for thermal energy storage.” Sol. Energy 83 (10): 1757–1763. https://doi.org/10.1016/j.solener.2009.05.008.
Sari, A., C. Alkan, and A. N. Özcan. 2015. “Synthesis and characterization of micro/nano capsules of PMMA/capric–stearic acid eutectic mixture for low temperature-thermal energy storage in buildings.” Energy Build. 90 (Mar): 106–113. https://doi.org/10.1016/j.enbuild.2015.01.013.
Sari, A., A. Bicer, C. Alkan, and A. N. Özcan. 2019. “Thermal energy storage characteristics of myristic acid-palmitic eutectic mixtures encapsulated in PMMA shell.” Sol. Energy Mater. Sol. Cells 193 (May): 1–6. https://doi.org/10.1016/j.solmat.2019.01.003.
Shilei, L., Z. Neng, and F. Guohui. 2006. “Impact of phase change wall room on indoor thermal environment in winter.” Energy Build. 38 (1): 18–24. https://doi.org/10.1016/j.enbuild.2005.02.007.
Singh, S., K. K. Gaikwad, and Y. S. Lee. 2018. “Phase change materials for advanced cooling packaging.” Environ. Chem. Lett. 16 (3): 845–859. https://doi.org/10.1007/s10311-018-0726-7.
Song, S., L. Dong, Z. Qu, J. Ren, and C. Xiong. 2014. “Microencapsulated capric-stearic acid with silica shell as a novel phase change material for thermal energy storage.” Appl. Therm. Eng. 70 (1): 546–551. https://doi.org/10.1016/j.applthermaleng.2014.05.067.
Srinivasaraonaik, B., L. P. Singh, S. Sinha, I. Tyagi, and A. Rawat. 2020. “Studies on the mechanical properties and thermal behavior of microencapsulated eutectic mixture in gypsum composite board for thermal regulation in the buildings.” J. Build. Eng. 31 (Sep): 101400. https://doi.org/10.1016/j.jobe.2020.101400.
Su, J.-F., X.-Y. Wang, S.-B. Wang, Y.-H. Zhao, and Z. Huang. 2012. “Fabrication and properties of microencapsulated-paraffin/gypsum-matrix building materials for thermal energy storage.” Energy Convers. Manage. 55 (Mar): 101–107. https://doi.org/10.1016/j.enconman.2011.10.015.
Sun, X., J. Jovanovic, Y. Zhang, S. Fan, Y. Chu, Y. Mo, and S. Liao. 2019. “Use of encapsulated phase change materials in lightweight building walls for annual thermal regulation.” Energy 180 (Aug): 858–872. https://doi.org/10.1016/j.energy.2019.05.112.
Tang, X., W. Li, X. Zhang, and H. Shi. 2014. “Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage.” Energy 68 (Apr): 160–166. https://doi.org/10.1016/j.energy.2014.03.002.
Tyagi, V. V., S. C. Kaushik, S. K. Tyagi, and T. Akiyama. 2011. “Development of phase change materials based microencapsulated technology for buildings: A review.” Renewable Sustainable Energy Rev. 15 (2): 1373–1391. https://doi.org/10.1016/j.rser.2010.10.006.
Weinläder, H., A. Beck, and J. Fricke. 2005. “PCM-facade-panel for daylighting and room heating.” Sol. Energy 78 (2): 177–186. https://doi.org/10.1016/j.solener.2004.04.013.
Zhang, H., Q. Xu, Z. Zhao, J. Zhang, Y. Sun, L. Sun, F. Xu, and Y. Sawada. 2012. “Preparation and thermal performance of gypsum boards incorporated with microencapsulated phase change materials for thermal regulation.” Sol. Energy Mater. Sol. Cells 102 (Jul): 93–102. https://doi.org/10.1016/j.solmat.2012.03.020.
Zhang, N., and Y. Yuan. 2020. “Synthesis and thermal properties of nanoencapsulation of paraffin as phase change material for latent heat thermal energy storage.” Energy Built Environ. 1 (4): 410–416. https://doi.org/10.1016/j.enbenv.2020.04.003.
Zhang, Y., W. Tao, K. Wang, and D. Li. 2020. “Analysis of thermal properties of gypsum materials incorporated with microencapsulated phase change materials based on silica.” Renewable Energy 149 (Apr): 400–408. https://doi.org/10.1016/j.renene.2019.12.051.
Zhang, Y., K. Wang, W. Tao, and D. Li. 2019. “Preparation of microencapsulated phase change materials used graphene oxide to improve thermal stability and its incorporation in gypsum materials.” Constr. Build. Mater. 224 (Nov): 48–56. https://doi.org/10.1016/j.conbuildmat.2019.06.227.
Zheng, L., W. Zhang, and F. Liang. 2017. “Experiment study on thermal conductivity of microcapsule phase change suspension applied to solar powered air conditioning cold storage system.” Procedia Eng. 205 (Jan): 1237–1244. https://doi.org/10.1016/j.proeng.2017.10.364.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 5May 2022

History

Received: Apr 15, 2021
Accepted: Sep 16, 2021
Published online: Feb 23, 2022
Published in print: May 1, 2022
Discussion open until: Jul 23, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Master Graduate, Faculty of Chemical, Petroleum, and Gas Engineering, Semnan Univ., P.O. Box 35196-45399, Semnan, Iran. ORCID: https://orcid.org/0000-0002-0121-3070. Email: [email protected]
Associate Professor, Faculty of Chemical, Petroleum, and Gas Engineering, Semnan Univ., P.O. Box 35196-45399, Semnan, Iran (corresponding author). ORCID: https://orcid.org/0000-0001-9613-8060. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Low-Temperature Phase-Change Microcapsules for Modified Asphalt Binder: Preparation, Characteristics, and Performance Evaluation, International Conference on Road and Airfield Pavement Technology 2023, 10.1061/9780784485255.048, (584-597), (2024).
  • Study of eutectic organic phase change materials with enhanced thermal properties, Materials Today: Proceedings, 10.1016/j.matpr.2022.03.706, 63, (553-558), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share