Technical Papers
Feb 17, 2022

Production of Rapid-Hardening Magnesium Oxysulfate Cement Containing Boric Acid

Publication: Journal of Materials in Civil Engineering
Volume 34, Issue 5

Abstract

Rapid-hardening magnesium oxysulfate (MOS) cements were prepared using a high-activity light-burned magnesia (HA-LBM) powder and boric acid (BA). The early hydration, compressive strength, phase composition, microstructure, water resistance, and solution chemistry have been studied. HA-LBM powder rapidly hydrates to form Mg(OH)2, and this causes rapid setting and poor mechanical properties. The addition of BA delays hydration, decreases the hydration temperature, increases setting time, promotes formation of Phase 517, and improves the physical properties. MOS cement pastes containing 1.0% by weight of BA had an initial setting time at 73 min, a final setting time at 101 min, a compressive strength after 12 h of 33.6 MPa, 28-day compressive strength of 91.4 MPa, and 28-day Rf of 0.87. The research highlights the excellent properties of MOS cements manufactured using HA-LBM and BA.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request. All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors wish to express their gratitude and sincere appreciation for the financial support by the National Natural Science Foundation of China (51778101), the National Key R&D Program of China (2020YFC1909304), the Natural Science Foundation of Liaoning Province of China (2020-MS-115), the “XingLiaoYingCai” project of Liaoning Province of China (XLYC2007126), and the Foundation for High-Level Talent Innovation Support Program of Dalian (2019RD05).

References

Amaral, L. F., I. R. Oliveira, P. Bonadia, R. Salomào, and V. C. Pandolfelli. 2011. “Chelants to inhibit magnesia (MgO) hydration.” Ceram. Int. 37 (5): 1537–1542. https://doi.org/10.1016/j.ceramint.2011.01.030.
Ba, M. F., Q. Gao, Y. L. Ma, J. Z. Zhu, and Y. G. Du. 2021. “Improved hydration and properties of magnesium oxysulfate (MOS) cement using sodium silicate as an additive.” Constr. Build. Mater. 267 (Jan): 120988. https://doi.org/10.1016/j.conbuildmat.2020.120988.
Barbieri, V., M. L. Gualtieri, T. Manfredini, and C. Siligardi. 2020. “Hydration kinetics and microstructural development of a magnesium oxysulfate cement modified by macromolecules.” Constr. Build. Mater. 248 (Jul): 118624. https://doi.org/10.1016/j.conbuildmat.2020.118624.
Beaudion, J. J., and V. S. Ramachandran. 1977. “Strength development in magnesium oxysulfate cement.” Concr. Cem. Res. 8 (1): 103–112. https://doi.org/10.1016/0008-8846(78)90063-7.
Bentz, D. P., and C. F. Ferraris. 2010. “Rheology and setting of high volume fly ash mixtures.” Cem. Concr. Compos. 32 (4): 265–270. https://doi.org/10.1016/j.cemconcomp.2010.01.008.
Chen, X. Y., T. T. Zhang, W. L. Bi, and C. R. Cheeseman. 2019. “Effect of tartaric acid and phosphoric acid on the water resistance of magnesium oxychloride (MOC) cement.” Constr. Build. Mater. 213 (Jul): 528–536. https://doi.org/10.1016/j.conbuildmat.2019.04.086.
Dang, L., X. Y. Nai, D. H. Zhu, Y. W. Jing, X. Liu, Y. P. Dong, and W. Li. 2014. “Study on the mechanism of surface modification of magnesium oxysulfate whisker.” Appl. Surf. Sci. 317 (Oct): 325–331. https://doi.org/10.1016/j.apsusc.2014.07.205.
Demediuk, T., and W. F. Cole. 1957. “A study on magnesium oxysulphates.” Aust. J. Chem. 10 (3): 287–294. https://doi.org/10.1071/CH9570287.
Deng, D. H. 2005. The theories and the practical techniques improve the properties of MgO-based basic cement. Changsha, China: Central South of Univ.
Dong, J. M., H. F. Yu, and L. M. Zhang. 2010. “Study on experimental conditions of hydration methods of determining active magnesium oxide content.” [In Chinese.] Salt. Lake. Res. 18 (1): 38–41.
Dung, N. T., A. Lesimple, R. Hay, and C. Unluer. 2019. “Formation of carbonate phases and their effect on the performance of reactive MgO cement formulations.” Cem. Concr. Res. 125 (Nov): 105894. https://doi.org/10.1016/j.cemconres.2019.105894.
Dung, N. T., and C. Unluer. 2021. “Advances in the hydration of reactive MgO cement blends incorporating different magnesium carbonates.” Constr. Build. Mater. 294 (Aug): 123573. https://doi.org/10.1016/j.conbuildmat.2021.123573.
GAQSIQC (General Administration of Quality Supervision, Inspection and Quarantin of the People’s Republic of China). 2011. Test methods for water requirement of normal consistency, setting time and soundness of the portland cement. GB/T 1346-2011. Beijing: GAQSIQC.
Gomes, C. E. M., and G. Camarini. 2014. “Magnesium oxysulfate fiber cement.” Key Eng. Mater. 600 (5): 308–318. https://doi.org/10.4028/www.scientific.net/KEM.600.308.
Gu, K., and B. Chen. 2020. “Research on the incorporation of untreated flue gas desulfurization gypsum into magnesium oxysulfate cement.” J. Cleaner Prod. 191 (Oct): 220–232. https://doi.org/10.1016/J.JCLEPRO.2020.122497.
Gu, K., B. Chen, H. F. Yu, N. Zhang, W. L. Bi, and Y. Guan. 2021. “Characterization of magnesium-calcium oxysulfate cement prepared by replacing MgSO4 in magnesium oxysulfate cement with untreated desulfurization gypsum.” Cem. Concr. Compos. 121 (Aug): 104091. https://doi.org/10.1016/J.CEMCONCOMP.2021.104091.
Guan, Y., Z. Q. Hu, Z. H. Zhang, J. Chang, W. L. Bi, C. R. Cheeseman, and T. T. Zhang. 2021. “Effect of hydromagnesite addition on the properties and water resistance of magnesium oxysulfate (MOS) cement.” Cem. Concr. Res. 143 (May): 106387. https://doi.org/10.1016/j.cemconres.2021.106387.
Guo, T., H. F. Wang, H. J. Yang, X. S. Cai, Q. Ma, and S. M. Yang. 2017. “The mechanical properties of magnesium oxysulfate cement enhanced with 517 phase magnesium oxysulfate whiskers.” Constr. Build. Mater. 150 (Sep): 844–850. https://doi.org/10.1016/j.conbuildmat.2017.06.024.
Haque, M. A., D. Pen, and B. Chen. 2020. “Effects of aluminum silicate on mechanical strength and microstructural improvement of magnesium phosphate cement mortar.” J. Mater. Civ. Eng. 32 (12): 04020360. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003413.
He, P. P., C. S. Poon, and D. C. W. Tsang. 2018. “Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement.” Cem. Concr. Compos. 86 (Feb): 98–109. https://doi.org/10.1016/j.cemconcomp.2017.11.010.
Hoang, T., N. T. Dung, C. Unluer, and J. Chu. 2021. “Use of microbial carbonation process to enable self-carbonation of reactive MgO cement mixes.” Cem. Concr. Res. 143 (May): 106391. https://doi.org/10.1016/j.cemconres.2021.106391.
Jia, X. W., J. M. Li, P. Wang, J. S. Qian, and M. H. Tang. 2019. “Preparation and mechanical properties of magnesium phosphate cement for rapid construction repair in ice and snow.” Constr. Build. Mater. 229 (Dec): 116927. https://doi.org/10.1016/j.conbuildmat.2019.116927.
Jia, Y., B. M. Wang, Z. L. Wu, J. N. Han, T. T. Zhang, L. J. Vandeperre, and C. R. Cheeseman. 2016. “Role of sodium hexametaphosphate in MgO/SiO2 cement pastes.” Cem. Concr. Res. 89 (Nov): 63–71. https://doi.org/10.1016/j.cemconres.2016.08.003.
Li, Q. Y., L. C. Zhang, X. J. Gao, and J. Y. Zhang. 2020a. “Effect of pulverized fuel ash, ground granulated blast-furnace slag and CO2 curing on performance of magnesium oxysulfate cement.” Constr. Build. Mater. 230 (Jan): 116990. https://doi.org/10.1016/j.conbuildmat.2019.116990.
Li, X., R. F. Qiu, F. B. Xue, L. Fang, and F. Q. Cheng. 2020b. “Effects of unreactive MgO and impurities in light burned MgO on the hydration process and performance of base magnesium sulfate cement.” Constr. Build. Mater. 240 (Apr): 117854. https://doi.org/10.1016/j.conbuildmat.2019.117854.
Li, Z. G., Z. Ji, L. Jiang, and S. Yu. 2017. “Effect of additives on the properties of magnesium oxysulfate cement.” J. Intell. Fuzzy Syst. 33 (5): 3021–3025. https://doi.org/10.3233/JIFS-169353.
Liu, X. W., Y. L. Feng, H. R. Li, P. Zhang, and P. Wang. 2011. “Preparation of light-burned magnesia from magnesite and its hydration kinetics.” [In Chinese.] J. Cent. South Univ. 42 (12): 3912–3917.
McCusker, L. B., R. B. Von Dreele, D. E. Cox, D. Louer, and P. Scardi. 1999. “Rietveld refinement guidelines.” J. Appl. Cryst. 32 (1): 36–50. https://doi.org/10.1107/S0021889898009856.
MIITC (Ministry of Industry and Information Technology of the People’s Republic of China). 2009. Test method for determining expansive ratio of expansive cement. JC/T 313-2009. Beijing: MIITC.
Mo, L. W., and D. K. Panesar. 2012. “Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO.” Cem. Concr. Res. 42 (6): 769–777. https://doi.org/10.1016/j.cemconres.2012.02.017.
Mo, L. W., and D. K. Panesar. 2013. “Accelerated carbonation—A potential approach to sequester CO2 in cement paste containing slag and reactive MgO.” Cem. Concr. Compos. 43 (Oct): 69–77. https://doi.org/10.1016/j.cemconcomp.2013.07.001.
Mo, L. W., F. Zhang, D. K. Panesar, and M. Deng. 2017. “Development of low-carbon cementitious materials via carbonating Portland cement-fly ash-magnesia blends under various curing scenarios: A comparative study.” J. Cleaner Prod. 163 (Oct): 252–261. https://doi.org/10.1016/j.jclepro.2016.01.066.
Panda, B., C. Sonat, E. H. Yang, M. J. Tan, and C. Unluer. 2021. “Use of magnesium-silicate-hydrate (M-S-H) cement mixes in 3D printing applications.” Cem. Concr. Compos. 117 (Mar): 103901. https://doi.org/10.1016/j.cemconcomp.2020.103901.
Qin, L., X. J. Gao, and T. F. Chen. 2018a. “Recycling of raw rice husk to manufacture magnesium oxysulfate cement based lightweight building materials.” J. Cleaner Prod. 191 (Aug): 220–232. https://doi.org/10.1016/j.jclepro.2018.04.238.
Qin, L., X. J. Gao, W. G. Li, and H. Ye. 2018b. “Modification of magnesium oxysulfate cement by incorporating weak acids.” J. Mater. Civ. Eng. 30 (9): 4018209. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002418.
Ruan, S. Q., and C. Unluer. 2016. “Comparative life cycle assessment of reactive MgO and Portland cement production.” J. Cleaner Prod. 137 (Nov): 258–273. https://doi.org/10.1016/j.jclepro.2016.07.071.
Ruan, S. Q., and C. Unluer. 2017. “Effect of air entrainment on the performance of reactive MgO and PC mixes.” Constr. Build. Mater. 142 (Jul): 221–232. https://doi.org/10.1016/j.conbuildmat.2017.03.068.
Runčevski, T., C. Y. Wu, H. F. Yu, B. Yang, and R. E. Dinnebier. 2013. “Structural characterization of a new magnesium oxysulfate hydrate cement phase and its surface reactions with atmospheric carbon dioxide.” J. Am. Ceram. Soc. 96 (11): 3609–3616. https://doi.org/10.1111/jace.12556.
SETCC (State Economic and Trade Commission of the People’s Republic of China). 2002. Caustic burned magnesia for magnesium oxychloride cement products. WB/T 1019-2002. Beijing: SETCC.
Tan, Y. N., Y. Liu, and L. Grover. 2014. “Effect of phosphoric acid on the properties of magnesium oxychloride cement as a biomaterial.” Cem. Concr. Res. 56 (2): 69–74. https://doi.org/10.1016/j.cemconres.2013.11.001.
Tan, Y. S., H. F. Yu, S. K. Sun, C. Y. Wu, and H. Ding. 2021. “Properties and microstructure of basic magnesium sulfate cement: Influence of silica fume.” Constr. Build. Mater. 266 (Jan): 121076. https://doi.org/10.1016/j.conbuildmat.2020.121076.
Tan, Y. S., H. F. Yu, and C. Y. Wu. 2020. “Investigation on the corrosion behavior of steel embedded in basic magnesium sulfate cement concrete: An attempt and challenges.” ACS Omega 5 (43): 27846–27856. https://doi.org/10.1021/acsomega.0c02882.
Tang, S. W., C. R. Wei, R. J. Cai, J. S. Huang, E. Chen, and J. H. Yuan. 2020a. “In situ monitoring of pore structure of magnesium oxysulfate cement paste: Effect of MgSO4/H2O ratio.” J. Ind. Eng. Chem. 83 (Mar): 387–400. https://doi.org/10.1016/j.jiec.2019.12.012.
Tang, S. W., J. H. Yuan, R. J. Cai, C. G. Wei, J. T. Chen, and E. Chen. 2020b. “In situ monitoring of hydration of magnesium oxysulfate cement paste: Effect of MgO/MgSO4 ratio.” Constr. Build. Mater. 251 (Aug): 119003. https://doi.org/10.1016/j.conbuildmat.2020.119003.
Urwongse, L., and C. A. Sorrell. 1980. “Phase relations in magnesium oxysulfate cements.” J. Am. Ceram. Soc. 63 (9–10): 523–526. https://doi.org/10.1111/j.1151-2916.1980.tb10757.x.
Walling, S. A., and J. L. Provis. 2016. “Magnesium-based cements: A journey of 150 years, and cements for the future?” Chem. Rev. 116 (7): 4170–4204. https://doi.org/10.1021/acs.chemrev.5b00463.
Wang, D., Y. F. Fang, Y. Y. Zhang, and J. Chang. 2019. “Changes in mineral composition, growth of calcite crystal, and promotion of physico-chemical properties induced by carbonation of βC2S.” J. CO2 Util. 34 (Dec): 149–162. https://doi.org/10.1016/j.jcou.2019.06.005.
Wang, G., and X. Jin. 2020. “The progress of 2019 novel coronavirus event in China.” J. Med. Virol. 92 (5): 468–472. https://doi.org/10.1002/jmv.25705.
Wang, L., S. S. Chen, D. C. W. Tsang, C. S. Poon, and K. Shih. 2016. “Recycling contaminated wood into eco-friendly particleboard using green cement and carbon dioxide curing.” J. Cleaner Prod. 137 (Nov): 861–870. https://doi.org/10.1016/j.jclepro.2016.07.180.
Wang, N., H. F. Yu, W. L. Bi, Y. S. Tan, N. Zhang, C. Y. Wu, H. Y. Ma, and S. Hua. 2018. “Effects of sodium citrate and citric acid on the properties of magnesium oxysulfate cement.” Constr. Build. Mater. 169 (Apr): 697–704. https://doi.org/10.1016/j.conbuildmat.2018.02.208.
Winnefeld, F., E. Epifania, F. Montagnaro, and E. M. Gartner. 2019. “Further studies of the hydration of MgO-hydromagnesite blends.” Cem. Concr. Res. 126 (Dec): 105912. https://doi.org/10.1016/j.cemconres.2019.105912.
Wu, C. Y., W. H. Chen, H. F. Zhang, H. F. Yu, W. Y. Zhang, N. S. Jiang, and L. X. Liu. 2017. “The hydration mechanism and performance of modified magnesium oxysulfate cement by tartaric acid.” Constr. Build. Mater. 144 (Jul): 516–524. https://doi.org/10.1016/j.conbuildmat.2017.03.222.
Wu, C. Y., H. F. Yu, J. M. Dong, and L. N. Zheng. 2014. “Effects of material ratio, fly ash, and citric acid on magnesium oxysulfate cement.” ACI Mater. J. 111 (3): 291–297. https://doi.org/10.14359/51686723.
Wu, C. Y., H. F. Yu, H. F. Zhang, J. M. Dong, J. Wen, and Y. S. Tan. 2015. “Effects of phosphoric acid and phosphates on magnesium oxysulfate cement.” Mater. Struct. 48 (4): 907–917. https://doi.org/10.1617/s11527-013-0202-6.
Wu, C. Y., H. F. Zhang, and H. F. Yu. 2016. “Preparation and properties of modified magnesium oxysulfate cement derived from waste sulfuric acid.” Adv. Cem. Res. 28 (3): 178–188. https://doi.org/10.1680/jadcr.15.00011.
You, C., J. S. Qian, J. H. Qin, H. T. Wang, Q. Z. Wang, and Z. Q. Ye. 2015. “Effect of early hydration temperature on hydration product and strength development of magnesium phosphate cement (MPC).” Cem. Concr. Res. 78 (Dec): 179–189. https://doi.org/10.1016/j.cemconres.2015.07.005.
Zhang, N., H. F. Yu, W. Gong, T. Liu, N. Wang, Y. S. Tan, and C. Y. Wu. 2020a. “Effects of low- and high-calcium fly ash on the water resistance of magnesium oxysulfate cement.” Constr. Build. Mater. 230 (Jan): 116951. https://doi.org/10.1016/j.conbuildmat.2019.116951.
Zhang, N., H. F. Yu, N. Wang, W. Gong, Y. S. Tan, and C. Y. Wu. 2019. “Effects of low- and high-calcium fly ash on magnesium oxysulfate cement.” Constr. Build. Mater. 215 (Aug): 162–170. https://doi.org/10.1016/j.conbuildmat.2019.04.185.
Zhang, T. T., T. Li, J. Zou, Y. M. Li, S. W. Zhi, Y. Jia, and C. R. Cheeseman. 2020b. “Immobilization of radionuclide Cs133 by magnesium silicate hydrate cement.” Mater. 146 (13): 1–17. https://doi.org/10.3390/ma13010146.
Zhang, T. T., L. J. Vandeperre, and C. R. Cheeseman. 2014. “Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate.” Cem. Concr. Res. 65 (Nov): 8–14. https://doi.org/10.1016/j.cemconres.2014.07.001.
Zhao, J. Y., J. H. Xu, C. Y. Cui, J. Chang, Z. Q. Hu, and W. L. Bi. 2020. “Stability and phase transition of 5·1·7 phase in alkaline solutions.” Constr. Build. Mater. 258 (Oct): 119683. https://doi.org/10.1016/j.conbuildmat.2020.119683.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 5May 2022

History

Received: May 5, 2021
Accepted: Sep 3, 2021
Published online: Feb 17, 2022
Published in print: May 1, 2022
Discussion open until: Jul 17, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Xiaoyang Chen [email protected]
Ph.D. Candidate, School of Chemical Engineering, Univ. of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China. Email: [email protected]
Tingting Zhang [email protected]
Professor, Faculty of Infrastructure Engineering, Dalian Univ. of Technology, Dalian, Liaoning 116024, PR China (corresponding author). Email: [email protected]
Christopher Cheeseman [email protected]
Professor, Dept. of Civil and Environmental Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK. Email: [email protected]
Professor, School of Materials and Metallurgy, Univ. of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China. Email: [email protected]
Shaoyan Wang [email protected]
Professor, School of Chemical Engineering, Univ. of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Understanding the role of seeds in reactive magnesia cement (RMC) formulations, Journal of the American Ceramic Society, 10.1111/jace.19038, (2023).
  • Impurity-Free Synthesis of Calcium Silicate Hydrate Seed-Based Concrete Hardening Accelerator from Agricultural Waste, Journal of Materials in Civil Engineering, 10.1061/(ASCE)MT.1943-5533.0004658, 35, 4, (2023).
  • Improved mechanical strength of magnesium oxysulfate cement using ferric sulfate, Journal of Building Engineering, 10.1016/j.jobe.2023.106007, 67, (106007), (2023).
  • Effect of tartaric acid on the early hydration process and water resistance of magnesium oxychloride cement, Journal of Building Engineering, 10.1016/j.jobe.2023.105838, 66, (105838), (2023).
  • Performance buildup of reactive magnesia cement (RMC) formulation via using CO2-strengthened recycled concrete aggregates (RCA), Journal of Building Engineering, 10.1016/j.jobe.2022.105779, 65, (105779), (2023).
  • Different effects for phosphoric acid and calcium citrate on properties of magnesium oxysulfate cement, Construction and Building Materials, 10.1016/j.conbuildmat.2023.130931, 374, (130931), (2023).
  • The phase composition of the MgO–MgSO4–H2O system and mechanisms of chemical additives, Composites Part B: Engineering, 10.1016/j.compositesb.2022.110328, 247, (110328), (2022).
  • Improved low-carbon magnesium oxysulfate cement pastes containing boric acid and citric acid, Cement and Concrete Composites, 10.1016/j.cemconcomp.2022.104813, 134, (104813), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share