Technical Papers
Oct 21, 2021

Mechanical and Microstructural Characterization of Carbon Nanofiber–Reinforced Geopolymer Nanocomposite Based on Lunar Regolith Simulant

Publication: Journal of Materials in Civil Engineering
Volume 34, Issue 1

Abstract

Using the Moon’s natural resources to build infrastructure is the first step toward lunar colonization. Lunar regolith, rich in aluminosilicate, has the potential to prepare geopolymer for construction. In this paper, carbon nanofibers (CNFs) were added to geopolymers based on lunar regolith simulant, aiming at reinforcing mechanical and microstructural properties. A ball-milling method of CNF dispersion into the lunar regolith simulant was evaluated. The mechanical properties of the resulting geopolymer nanocomposites was investigated. X-ray diffractometry, scanning electron microscopy, Fourier transform infrared spectrometry, and mercury intrusion porosimetry were used to characterize the microstructural properties. The results indicated that the mechanical properties were improved by CNFs and that the optimal content was 0.3% by weight. Also, flexural strength, Young’s modulus, flexural toughness, peak displacement, and compressive strength were reinforced by 34.8%, 7.5%, 83.9%, 21.4%, and 13.1%, respectively. Microstructural results suggested that the CNFs acted as nucleation, fillers, and bridges in the nanocomposites, leading to lower porosity, higher energy requirement for failure, and higher mechanical properties, which are considerable for lunar-based construction.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 51978029) and the Department of Transportation of Shandong Province (No. 2018BZ4).

References

Abbasi, S. M., H. Ahmadi, G. Khalaj, and B. Ghasemi. 2016. “Microstructure and mechanical properties of a metakaolinite-based geopolymer nanocomposite reinforced with carbon nanotubes.” Ceram. Int. 42 (14): 15171–15176. https://doi.org/10.1016/j.ceramint.2016.06.080.
Akono, A. T. 2020. “Fracture behavior of metakaolin-based geopolymer reinforced with carbon nanofibers.” Int. J. Ceram. Eng. Sci. 2 (5): 234–242. https://doi.org/10.1002/ces2.10060.
Alexiadis, A., F. Alberini, and M. E. Meyer. 2017. “Geopolymers from lunar and Martian soil simulants.” Adv. Space Res. 59 (1): 490–495. https://doi.org/10.1016/j.asr.2016.10.003.
Barbosa, V. F. F., K. J. D. MacKenzie, and C. Thaumaturgo. 2000. “Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers.” Int. J. Inorg. Mater. 2 (4): 309–317. https://doi.org/10.1016/S1466-6049(00)00041-6.
Çetintaş, R., and S. Soyer-Uzun. 2018. “Relations between structural characteristics and compressive strength in volcanic ash based one–part geopolymer systems.” J. Build. Eng. 20 (4): 130–136. https://doi.org/10.1016/j.jobe.2018.07.011.
Chinese Standard. 1999. Method of testing cements—Determination of strength. Beijing: State Bureau of Quality Technical Supervision.
Collins, F., and J. G. Sanjayan. 2001. “Microcracking and strength development of alkali activated slag concrete.” Cem. Concr. Compos. 23 (4): 345–352. https://doi.org/10.1016/S0958-9465(01)00003-8.
da Luz, G., P. J. P. Gleize, E. R. Batiston, and F. Pelisser. 2019. “Effect of pristine and functionalized carbon nanotubes on microstructural, rheological, and mechanical behaviors of metakaolin-based geopolymer.” Cem. Concr. Compos. 104 (Nov): 103332. https://doi.org/10.1016/j.cemconcomp.2019.05.015.
Danoglidis, P. A., M. S. Konsta-Gdoutos, E. E. Gdoutos, and S. P. Shah. 2016. “Strength, energy absorption capability and self-sensing properties of multifunctional carbon nanotube reinforced mortars.” Constr. Build. Mater. 120 (Sep): 265–274. https://doi.org/10.1016/j.conbuildmat.2016.05.049.
de Vargas, A. S., D. C. C. Dal Molin, Â. B. Masuero, A. C. F. Vilela, J. Castro-Gomes, and R. M. de Gutierrez. 2014. “Strength development of alkali-activated fly ash produced with combined NaOH and Ca(OH)2 activators.” Cem. Concr. Compos. 53 (Oct): 341–349. https://doi.org/10.1016/j.cemconcomp.2014.06.012.
Editorial Department. 2020. “Review on China’s pavement engineering research 2020.” China J. Highway Transp. 33 (10): 1–66. https://doi.org/10.19721/j.cnki.1001-7372.2020.10.001.
Fateri, M., and A. Gebhardt. 2015. “Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications.” Int. J. Appl. Ceram. Technol. 12 (1): 46–52. https://doi.org/10.1111/ijac.12326.
Firdous, R., D. Stephan, and J. N. Y. Djobo. 2018. “Natural pozzolan based geopolymers: A review on mechanical, microstructural and durability characteristics.” Constr. Build. Mater. 190 (Nov): 1251–1263. https://doi.org/10.1016/j.conbuildmat.2018.09.191.
Foust, J. 2015. “Senate bill provides partial funding increase for FAA commercial space office.” Accessed January 7, 2021. https://spacenews.com/senate-bill-provides-partial-funding-increase-for-faa-commercial-space-office/.
Gates-Rector, S., and T. Blanton. 2019. “The powder diffraction file: A quality materials characterization database.” Powder Diffr. 34 (4): 352–360. https://doi.org/10.1017/S0885715619000812.
Gdoutos, E. E., M. S. Konsta-Gdoutos, and P. A. Danoglidis. 2016. “Portland cement mortar nanocomposites at low carbon nanotube and carbon nanofiber content: A fracture mechanics experimental study.” Cem. Concr. Compos. 70 (Jul): 110–118. https://doi.org/10.1016/j.cemconcomp.2016.03.010.
Gualtieri, T., and A. Bandyopadhyay. 2015. “Compressive deformation of porous lunar regolith.” Mater. Lett. 143 (Mar): 276–278. https://doi.org/10.1016/j.matlet.2014.11.153.
Gunasekara, C., S. Setunge, and D. W. Law. 2017. “Long-term mechanical properties of different fly ash geopolymers.” ACI Struct. J. 114 (3): 743–752. https://doi.org/10.14359/51689454.
Heiken, G., D. Vaniman, and B. French. 1991. Lunar sourcebook—A user’s guide to the moon, 264–269. New York: Cambridge University Press.
Jiang, M., L. Li, and Y. Sun. 2012. “Properties of TJ-1 lunar soil simulant.” J. Aerosp. Eng. 25 (3): 463–469. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000129.
Kanamori, H., S. Udagawa, T. Yoshida, S. Matsumoto, and K. Takagi. 1998. “Properties of lunar soil simulant manufactured in Japan.” Space 98 (2): 462–468. https://doi.org/10.1061/40339(206)53.
Khater, H. M., and H. A. Abd el Gawaad. 2016. “Characterization of alkali activated geopolymer mortar doped with MWCNT.” Constr. Build. Mater. 102 (10): 329–337. https://doi.org/10.1016/j.conbuildmat.2015.10.121.
Konsta-Gdoutos, M. S., G. Batis, P. A. Danoglidis, A. K. Zacharopoulou, E. K. Zacharopoulou, M. G. Falara, and S. P. Shah. 2017. “Effect of CNT and CNF loading and count on the corrosion resistance, conductivity and mechanical properties of nanomodified OPC mortars.” Constr. Build. Mater. 147 (Aug): 48–57. https://doi.org/10.1016/j.conbuildmat.2017.04.112.
Konsta-Gdoutos, M. S., Z. S. Metaxa, and S. P. Shah. 2010. “Highly dispersed carbon nanotube reinforced cement based materials.” Cem. Concr. Res. 40 (7): 1052–1059. https://doi.org/10.1016/j.cemconres.2010.02.015.
Lawler, J. S., T. Wilhelm, D. Zampini, and S. P. Shah. 2003. “Fracture processes of hybrid fiber-reinforced mortar.” Mater. Struct. 36 (3): 197–208. https://doi.org/10.1007/BF02479558.
Lemougna, P. N., K. J. D. MacKenzie, G. N. L. Jameson, H. Rahier, and U. F. Chinje Melo. 2013. “The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: A 57Fe Mössbauer spectroscopy study.” J. Mater. Sci. 48 (15): 5280–5286. https://doi.org/10.1007/s10853-013-7319-4.
Li, C., K. Xie, A. Liu, and Z. Shi. 2019. “The preparation and characterization of NEU-1 lunar soil simulants.” JOM 71 (4): 1471–1476. https://doi.org/10.1007/s11837-019-03362-6.
Li, Z., M.-E. Fei, C. Huyan, and X. Shi. 2020. “Nano-engineered, fly ash-based geopolymer composites: An overview.” Resour. Conserv. Recycl. 2020 (Dec): 105334. https://doi.org/10.1016/j.resconrec.2020.105334.
Lin, T., D. Jia, P. He, M. Wang, and D. Liang. 2008. “Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites.” Mater. Sci. Eng., A 497 (1–2): 181–185. https://doi.org/10.1016/j.msea.2008.06.040.
McKay, D. S., J. L. Carter, W. W. Boles, C. C. Allen, and J. H. Allton. 1993. “JSC-1: A new lunar regolith simulant.” In Proc., 24th Lunar Planet Science Conf., 963–964. Houston, TX: NASA Johnson Space Center.
Metaxa, Z. S., M. S. Konsta-Gdoutos, and S. P. Shah. 2010. “Carbon nanofiber–reinforced cement-based materials.” Transp. Res. Rec. 2142 (1): 114–118. https://doi.org/10.3141/2142-17.
Metaxa, Z. S., M. S. Konsta-Gdoutos, and S. P. Shah. 2013. “Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency.” Cem. Concr. Compos. 36 (6): 25–32. https://doi.org/10.1016/j.cemconcomp.2012.10.009.
Meurisse, A., A. Makaya, C. Willsch, and M. Sperl. 2018. “Solar 3D printing of lunar regolith.” Acta Astronaut. 152 (Nov): 800–810. https://doi.org/10.1016/j.actaastro.2018.06.063.
Montes, C., K. Broussard, M. Gongre, N. Simicevic, J. Mejia, J. Tham, E. Allouche, and G. Davis. 2015. “Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications.” Adv. Space Res. 56 (6): 1212–1221. https://doi.org/10.1016/j.asr.2015.05.044.
Pan, Z., J. G. Sanjayan, and B. V. Rangan. 2011. “Fracture properties of geopolymer paste and concrete.” Mag. Concr. Res. 63 (10): 763–771. https://doi.org/10.1680/macr.2011.63.10.763.
Panias, D., I. P. Giannopoulou, and T. Perraki. 2007. “Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers.” Colloids Surf., A 301 (1–3): 246–254. https://doi.org/10.1016/j.colsurfa.2006.12.064.
Rovnaník, P., H. Šimonová, L. Topolář, P. Bayer, P. Schmid, and Z. Keršner. 2016a. “Carbon nanotube reinforced alkali-activated slag mortars.” Constr. Build. Mater. 119 (12): 223–229. https://doi.org/10.1016/j.conbuildmat.2016.05.051.
Rovnaník, P., H. Šimonová, L. Topolář, P. Schmid, and Z. Keršner. 2016b. “Effect of carbon nanotubes on the mechanical fracture properties of fly ash geopolymer.” Procedia Eng. 151 (Jan): 321–328. https://doi.org/10.1016/j.proeng.2016.07.360.
Saafi, M., K. Andrew, P. L. Tang, D. McGhon, S. Taylor, M. Rahman, S. Yang, and X. Zhou. 2013. “Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites.” Constr. Build. Mater. 49 (Dec): 46–55. https://doi.org/10.1016/j.conbuildmat.2013.08.007.
Sanchez, F., L. Zhang, and C. Ince. 2009. “Multi-scale performance and durability of carbon nanofiber/cement composites.” Nanotechnol. Constr. 3 (2): 345–350. https://doi.org/10.1007/978-3-642-00980-8_46.
Shi, C., A. F. Jiménez, and A. Palomo. 2011. “New cements for the 21st century: The pursuit of an alternative to Portland cement.” Cem. Concr. Res. 41 (7): 750–763. https://doi.org/10.1016/j.cemconres.2011.03.016.
Sing, K. S. W., D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, and J. Rouquerol. 1985. “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984).” Pure Appl. Chem. 57 (4): 603–619. https://doi.org/10.1351/pac198557040603.
Song, L., J. Xu, S. Fan, H. Tang, X. Li, J. Liu, and X. Duan. 2019. “Vacuum sintered lunar regolith simulant: Pore-forming and thermal conductivity.” Ceram. Int. 45 (3): 3627–3633. https://doi.org/10.1016/j.ceramint.2018.11.023.
Su, Z., W. Hou, and Z. Sun. 2020. “Recent advances in carbon nanotube-geopolymer composite.” Constr. Build. Mater. 252 (Aug): 118940. https://doi.org/10.1016/j.conbuildmat.2020.118940.
Tchakoute Kouamo, H., A. Elimbi, J. A. Mbey, C. J. Ngally Sabouang, and D. Njopwouo. 2012. “The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: A comparative study.” Constr. Build. Mater. 35 (May): 960–969. https://doi.org/10.1016/j.conbuildmat.2012.04.023.
Tibbetts, G., M. Lake, K. Strong, and B. Rice. 2007. “A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites.” Compos. Sci. Technol. 67 (7–8): 1709–1718. https://doi.org/10.1016/j.compscitech.2006.06.015.
Toutanji, H. A., S. Evans, and R. N. Grugel. 2012. “Performance of lunar sulfur concrete in lunar environments.” Constr. Build. Mater. 29 (Apr): 444–448. https://doi.org/10.1016/j.conbuildmat.2011.10.041.
Tyson, B. M., R. K. Abu Al-Rub, A. Yazdanbakhsh, and Z. Grasley. 2011. “Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials.” J. Mater. Civ. Eng. 23 (7): 1028–1035. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000266.
Weiblen, P. W., M. J. Murawa, and K. J. Reid. 1990. “Preparation of simulants for lunar surface materials.” In Engineering, construction, and operations in space II, 98–106. Reston, VA: ASCE.
Williams, J. P., D. A. Paige, B. T. Greenhagen, and E. Sefton-Nash. 2017. “The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment.” Icarus 283 (Feb): 300–325. https://doi.org/10.1016/j.icarus.2016.08.012.
Yan, S., F. Zhang, J. Kong, B. Wang, H. Li, Y. Yang, and P. Xing. 2020. “Mechanical properties of geopolymer composite foams reinforced with carbon nanofibers via modified hydrogen peroxide method.” Mater. Chem. Phys. 253 (Oct): 123258. https://doi.org/10.1016/j.matchemphys.2020.123258.
Yazdanbakhsh, A., Z. Grasley, B. Tyson, and R. K. A. Al-Rub. 2010. “Distribution of carbon nanofibers and nanotubes in cementitious composites.” Transp. Res. Rec. 2142 (1): 89–95. https://doi.org/10.3141/2142-13.
Yongchun, Z., W. Shijie, O. Ziyuan, Z. Yongliao, L. Jianzhong, L. Chunlai, L. Xiongyao, and F. Junming. 2009. “CAS-1 lunar soil simulant.” Adv. Space Res. 43 (3): 448–454. https://doi.org/10.1016/j.asr.2008.07.006.
Yuan, J., et al. 2017. “In situ processing of MWCNTs/leucite composites through geopolymer precursor.” J. Eur. Ceram. Soc. 37 (5): 2219–2226. https://doi.org/10.1016/j.jeurceramsoc.2017.01.008.
Zhou, S., C. Lu, X. Zhu, and F. Li. 2020a. “Preparation and characterization of high-strength geopolymer based on BH-1 lunar soil simulant with low alkali content.” Engineering 2020 (Dec): 29. https://doi.org/10.1016/j.eng.2020.10.016.
Zhou, S., X. Zhu, C. Lu, and F. Li. 2020b. “Synthesis and characterization of geopolymer from lunar regolith simulant based on natural volcanic scoria.” Chin. J. Aeronaut. 2020 (1): 48. https://doi.org/10.1016/j.cja.2020.06.014.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 1January 2022

History

Received: Feb 9, 2021
Accepted: May 12, 2021
Published online: Oct 21, 2021
Published in print: Jan 1, 2022
Discussion open until: Mar 21, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Rongrong Zhang [email protected]
Ph.D. Candidate, School of Transportation Science and Engineering, Beihang Univ., Beijing 100191, China. Email: [email protected]
Ph.D. Candidate, School of Transportation Science and Engineering, Beihang Univ., Beijing 100191, China (corresponding author). Email: [email protected]
Professor, School of Transportation Science and Engineering, Beihang Univ., Beijing 100191, China. Email: [email protected]
Professor of Engineering, Shandong Provincial Communications Planning and Design Institute Co., Ltd., No. 576, Wuyingshan West Rd., Tianqiao District, Jinan, Shandong 250031, China. Email: [email protected]
Professor, Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji Univ., Shanghai 200092, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • An Overview for Modern Energy-Efficient Solutions for Lunar and Martian Habitats Made Based on Geopolymers Composites and 3D Printing Technology, Energies, 10.3390/en15249322, 15, 24, (9322), (2022).
  • Research progress on lunar and Martian concrete, Construction and Building Materials, 10.1016/j.conbuildmat.2022.128117, 343, (128117), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share