Abstract

Stress–time avalanches of recycled polyethylene terephthalate (PET) fiber–reinforced concrete during flexure were investigated based on high temporal resolution signals in this study. Stress drops were extracted based on measurements collected at 100 kHz and modeled as avalanches using the mean field model. Two types of avalanches were observed during flexure of PET fiber beams, i.e., small avalanches collapsed on the scaling regime and large avalanches beyond the regime. The measured stress drop profiles of small avalanches in the scaling regime agreed with predictions from the mean field theory that has been used to model avalanches. When the peak stress was reached after the fracture of bottom concrete, the postpeak avalanche size could exceed the avalanche size at the bottom fracture. Findings from this study could provide essential clues to the understanding of fiber-reinforced concrete during bending.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work was supported by the Transportation Infrastructure Durability Center funding from the US Department of Transportation (Grant 69A3551847101), the College of Engineering and Mathematical Sciences at the University of Vermont (UVM), and the Vermont Technical College. Appreciation is also extended to the UVM microscopy imaging center for the assistance of image characterization.

References

Afroughsabet, V., L. Biolzi, and T. Ozbakkaloglu. 2016. “High-performance fiber-reinforced concrete: A review.” J. Mater. Sci. 51 (14): 6517–6551. https://doi.org/10.1007/s10853-016-9917-4.
Alghamdi, S., F. Du, J. Yang, G. Pinder, and T. Tan. 2020a. “Tensile and shear behavior of microscale growth layers between nacre in red abalone.” J. Mech. Phys. Solids 138 (May): 103928. https://doi.org/10.1016/j.jmps.2020.103928.
Alghamdi, S., F. Du, J. Yang, and T. Tan. 2018. “The role of water in the initial sliding of nacreous tablets: Findings from the torsional fracture of dry and hydrated nacre.” J. Mech. Behav. Biomed. Mater. 88 (Dec): 322–329. https://doi.org/10.1016/j.jmbbm.2018.08.051.
Alghamdi, S., Z. Liu, F. Du, J. Yang, K. A. Dahmen, and T. Tan. 2020b. “Sliding avalanches between nacreous tablets.” Nano Lett. 20 (7): 5024–5029. https://doi.org/10.1021/acs.nanolett.0c01148.
Alghamdi, S., T. Tan, C. Hale-Sills, F. Vilmont, T. Xia, J. Yang, D. Huston, and M. Dewoolkar. 2017. “Catastrophic failure of nacre under pure shear stresses of torsion.” Sci. Rep. 7 (1): 13123. https://doi.org/10.1038/s41598-017-13492-z.
Antonaglia, J., W. J. Wright, X. Gu, R. R. Byer, T. C. Hufnagel, M. LeBlanc, J. T. Uhl, and K. A. Dahmen. 2014. “Bulk metallic glasses deform via slip avalanches.” Phys. Rev. Lett. 112 (15): 155501. https://doi.org/10.1103/PhysRevLett.112.155501.
ASTM. 2017. Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials by four-point bending. West Conshohocken, PA: ASTM.
Azeko, S. T., K. Mustapha, E. Annan, O. S. Odusanya, A. B. O. Soboyejo, and W. O. Soboyejo. 2016. “Statistical distributions of the strength and fracture toughness of recycled polyethylene-reinforced laterite composites.” J. Mater. Civ. Eng. 28 (3): 04015146. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001426.
Carrillo, L., L. Mañosa, J. Ortín, A. Planes, and E. Vives. 1998. “Experimental evidence for universality of acoustic emission avalanche distributions during structural transitions.” Phys. Rev. Lett. 81 (9): 1889. https://doi.org/10.1103/PhysRevLett.81.1889.
Chaudhary, M., V. Srivastava, and V. Agarwal. 2014. “Effect of waste low density polyethylene on mechanical properties of concrete.” J. Acad. Ind. Res. 3 (3): 123–126.
Choi, J.-I., B. Y. Lee, R. Ranade, V. C. Li, and Y. Lee. 2016. “Ultra-high-ductile behavior of a polyethylene fiber-reinforced alkali-activated slag-based composite.” Cem. Concr. Compos. 70 (Jul): 153–158. https://doi.org/10.1016/j.cemconcomp.2016.04.002.
Correal, J., C. Herrán, J. Carrillo, J. Reyes, and G. Hermida. 2018. “Performance of hybrid fiber-reinforced concrete for low-rise housing with thin walls.” Constr. Build. Mater. 185 (Oct): 519–529. https://doi.org/10.1016/j.conbuildmat.2018.07.048.
Curosu, I., M. Liebscher, V. Mechtcherine, C. Bellmann, and S. Michel. 2017. “Tensile behavior of high-strength strain-hardening cement-based composites (HS-SHCC) made with high-performance polyethylene, aramid and PBO fibers.” Cem. Concr. Res. 98 (Aug): 71–81. https://doi.org/10.1016/j.cemconres.2017.04.004.
Dahmen, K. A. 2017. “Mean field theory of slip statistics.” In Avalanches in functional materials and geophysics, 19–30. Berlin: Springer.
Dahmen, K. A., Y. Ben-Zion, and J. T. Uhl. 2011. “A simple analytic theory for the statistics of avalanches in sheared granular materials.” Nat. Phys. 7 (7): 554. https://doi.org/10.1038/nphys1957.
Dai, X., Q. Pu, L. Wang, H. Yun, and Y. Wang. 2011. “Measurement on fracture process and prediction of the load capacity of steel fiber reinforced concrete by electronic speckle pattern interferometry.” Composites, Part B 42 (5): 1181–1188. https://doi.org/10.1016/j.compositesb.2011.03.003.
Delaplace, A., and A. Ibrahimbegovic. 2006. “Performance of time-stepping schemes for discrete models in fracture dynamic analysis.” Int. J. Numer. Methods Eng. 65 (9): 1527–1544. https://doi.org/10.1002/nme.1509.
Delaplace, A., S. Roux, and G. Pijaudier-Cabot. 2001. “Avalanche statistics of interface crack propagation in fiber bundle model: Characterization of cohesive crack.” J. Eng. Mech. 127 (7): 646–652. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:7(646).
Delaplace, A., S. Roux, and G. Pijaudier-Cabot. 2003. “Study of avalanches during the fracture of discrete models.” Eng. Fract. Mech. 70 (7–8): 943–955. https://doi.org/10.1016/S0013-7944(02)00159-5.
Diodati, P., F. Marchesoni, and S. Piazza. 1991. “Acoustic emission from volcanic rocks: an example of self-organized criticality.” Phys. Rev. Lett. 67 (17): 2239. https://doi.org/10.1103/PhysRevLett.67.2239.
Fisher, D. S. 1998. “Collective transport in random media: From superconductors to earthquakes.” Phys. Rep. 301 (1–3): 113–150. https://doi.org/10.1016/S0370-1573(98)00008-8.
Fraternali, F., V. Ciancia, R. Chechile, G. Rizzano, L. Feo, and L. Incarnato. 2011. “Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete.” Compos. Struct. 93 (9): 2368–2374. https://doi.org/10.1016/j.compstruct.2011.03.025.
Fraternali, F., S. Spadea, and V. P. Berardi. 2014. “Effects of recycled PET fibres on the mechanical properties and seawater curing of Portland cement-based concretes.” Constr. Build. Mater. 61 (Jun): 293–302. https://doi.org/10.1016/j.conbuildmat.2014.03.019.
Gershenfeld, N. 1999. The nature of mathematical modeling. Cambridge, UK: Cambridge University Press.
Guarino, A., A. Garcimartin, and S. Ciliberto. 1998. “An experimental test of the critical behavior of fracture precursors.” Eur. Phys. J. B 6 (1): 13–24. https://doi.org/10.1007/s100510050521.
He, S., J. Qiu, J. Li, and E.-H. Yang. 2017. “Strain hardening ultra-high performance concrete (SHUHPC) incorporating CNF-coated polyethylene fibers.” Cem. Concr. Res. 98 (Aug): 50–60. https://doi.org/10.1016/j.cemconres.2017.04.003.
Joo Kim, D., A. E. Naaman, and S. El-Tawil. 2008. “Comparative flexural behavior of four fiber reinforced cementitious composites.” Cem. Concr. Compos. 30 (10): 917–928. https://doi.org/10.1016/j.cemconcomp.2008.08.002.
Juanico, D., A. Longjas, R. Batac, and C. Monterola. 2008. “Avalanche statistics of driven granular slides in a miniature mound.” Geophys. Res. Lett. 35 (19): L19403.https://doi.org/10.1029/2008GL035567.
Kim, S. B., N. H. Yi, H. Y. Kim, J. H. J. Kim, and Y. C. Song. 2010. “Material and structural performance evaluation of recycled PET fiber reinforced concrete.” Cem. Concr. Compos. 32 (3): 232–240. https://doi.org/10.1016/j.cemconcomp.2009.11.002.
Lanaro, M., L. Booth, S. K. Powell, and M. A. Woodruff. 2018. “Electrofluidodynamic technologies for biomaterials and medical devices: melt electrospinning, electrofluidodynamic technologies (EFDTs) for biomaterials and medical devices.” Elsevier 2018 (1): 37–69. https://doi.org/10.1016/B978-0-08-101745-6.00003-7.
Li, J., C. Wu, H. Hao, Y. Su, and Z. Liu. 2016. “Blast resistance of concrete slab reinforced with high performance fibre material.” J. Struct. Integrity Maint. 1 (2): 51–59. https://doi.org/10.1080/24705314.2016.1179496.
Li, Y., J. Yang, J. Hughes, and T. Tan. 2019. “An experimental study on adhesion between steel and cement pastes using particle probe scanning force microscopy.” J. Am. Ceram. Soc. 102 (3): 1347–1361. https://doi.org/10.1111/jace.15971.
Li, Y., J. Yang, and T. Tan. 2018. “Measuring adhesion between steel and early-hydrated Portland cement using particle probe scanning force microscopy.” Cem. Concr. Compos. 90 (Jul): 126–135. https://doi.org/10.1016/j.cemconcomp.2018.03.025.
Lin, X., J. Yu, H. Li, J. Y. Lam, K. Shih, I. M. Sham, and C. K. Leung. 2018. “Recycling polyethylene terephthalate wastes as short fibers in strain-hardening cementitious composites (SHCC).” J. Hazard. Mater. 357 (Sep): 40–52. https://doi.org/10.1016/j.jhazmat.2018.05.046.
Liu, Z., R. Worley, F. Du, C. D. Giles, M. Dewoolkar, D. Huston, and T. Tan. 2020. “Avalanches during flexure of early-age steel fiber reinforced concrete beams.” Mater. Struct. 53 (4): 1–20. https://doi.org/10.1617/s11527-020-01520-w.
Liu, Z., R. Worley, F. Du, C. D. Giles, M. Dewoolkar, D. Huston, and T. Tan. 2021a. “A study on avalanches of early age basalt fiber reinforced concrete beams during flexure.” J. Cleaner Prod. 279 (12): 123695. https://doi.org/10.1016/j.jclepro.2020.123695.
Liu, Z., R. Worley, F. Du, D. Huston, M. Dewoolkar, and T. Tan. 2021b. “Measurement of stress-time avalanches inside polypropylene fiber reinforced concrete beams during flexure.” Constr. Build. Mater. 270 (Feb): 121428. https://doi.org/10.1016/j.conbuildmat.2020.121428.
Mäkinen, T., A. Miksic, M. Ovaska, and M. J. Alava. 2015. “Avalanches in wood compression.” Phys. Rev. Lett. 115 (5): 055501. https://doi.org/10.1103/PhysRevLett.115.055501.
McFaul, L. W., W. J. Wright, J. Sickle, and K. A. Dahmen. 2019. “Force oscillations distort avalanche shapes.” Mater. Res. Lett. 7 (12): 496–502. https://doi.org/10.1080/21663831.2019.1659437.
Mehta, A. P., K. A. Dahmen, and Y. Ben-Zion. 2006. “Universal mean moment rate profiles of earthquake ruptures.” Phys. Rev. E 73 (5): 056104. https://doi.org/10.1103/PhysRevE.73.056104.
Merli, R., M. Preziosi, A. Acampora, M. C. Lucchetti, and E. Petrucci. 2020. “Recycled fibers in reinforced concrete: A systematic literature review.” J. Cleaner Prod. 248 (2): 119207. https://doi.org/10.1016/j.jclepro.2019.119207.
Mukhopadhyay, S., and S. Khatana. 2015. “A review on the use of fibers in reinforced cementitious concrete.” J. Ind. Text. 45 (2): 239–264. https://doi.org/10.1177/1528083714529806.
Navas-Portella, V., Á. Corral, and E. Vives. 2016. “Avalanches and force drops in displacement-driven compression of porous glasses.” Phys. Rev. E 94 (3): 033005. https://doi.org/10.1103/PhysRevE.94.033005.
Ochi, T., S. Okubo, and K. Fukui. 2007. “Development of recycled PET fiber and its application as concrete-reinforcing fiber.” Cem. Concr. Compos. 29 (6): 448–455. https://doi.org/10.1016/j.cemconcomp.2007.02.002.
Pakravan, H. R., and T. Ozbakkaloglu. 2019. “Synthetic fibers for cementitious composites: A critical and in-depth review of recent advances.” Constr. Build. Mater. 207 (8): 491–518. https://doi.org/10.1016/j.conbuildmat.2019.02.078.
Papanikolaou, S., F. Bohn, R. L. Sommer, G. Durin, S. Zapperi, and J. P. Sethna. 2011. “Universality beyond power laws and the average avalanche shape.” Nat. Phys. 7 (4): 316. https://doi.org/10.1038/nphys1884.
Perla, R., T. Cheng, and D. M. McClung. 1980. “A two–parameter model of snow–avalanche motion.” J. Glaciol. 26 (94): 197–207. https://doi.org/10.1017/S002214300001073X.
Pešić, N., S. Živanović, R. Garcia, and P. Papastergiou. 2016. “Mechanical properties of concrete reinforced with recycled HDPE plastic fibres.” Constr. Build. Mater. 115 (Jul): 362–370. https://doi.org/10.1016/j.conbuildmat.2016.04.050.
Pyo, S., K. Wille, S. El-Tawil, and A. E. Naaman. 2015. “Strain rate dependent properties of ultra high performance fiber reinforced concrete (UHP-FRC) under tension.” Cem. Concr. Compos. 56 (Feb): 15–24. https://doi.org/10.1016/j.cemconcomp.2014.10.002.
Rahbar, N., M. Jorjani, C. Riccardelli, G. Wheeler, I. Yakub, T. Tan, and W. O. Soboyejo. 2010. “Mixed mode fracture of marble/adhesive interfaces.” Mater. Sci. Eng. A 527 (18–19): 4939–4946. https://doi.org/10.1016/j.msea.2010.04.029.
Rahimi, S., I. M. Nikbin, H. Allahyari, and S. Habibi. 2016. “Sustainable approach for recycling waste tire rubber and polyethylene terephthalate (PET) to produce green concrete with resistance against sulfuric acid attack.” J. Cleaner Prod. 126 (8): 166–177. https://doi.org/10.1016/j.jclepro.2016.03.074.
Ranade, R., V. C. Li, and W. F. Heard. 2015. “Tensile rate effects in high strength-high ductility concrete.” Cem. Concr. Res. 68 (Sep): 94–104. https://doi.org/10.1016/j.cemconres.2014.11.005.
Ritchie, H., and M. Roser. 2018. “Plastic pollution.” Our World in Data. Accessed January 5, 2021. https://ourworldindata.org/plastic-pollution.
Rodrigues Junior, S. A., J. L. Ferracane, and Á. Della Bona. 2008. “Flexural strength and Weibull analysis of a microhybrid and a nanofill composite evaluated by 3- and 4-point bending tests.” Dent. Mater. 24 (3): 426–431. https://doi.org/10.1016/j.dental.2007.05.013.
Savage, S. B., and K. Hutter. 1991. “The dynamics of avalanches of granular materials from initiation to runout.” Acta Mech. 86 (1–4): 201–223. https://doi.org/10.1007/BF01175958.
Schweizer, J., J. Bruce Jamieson, and M. Schneebeli. 2003. “Snow avalanche formation.” Rev. Geophys. 41 (4): 1016. https://doi.org/10.1029/2002RG000123.
Siddique, R., J. Khatib, and I. Kaur. 2008. “Use of recycled plastic in concrete: A review.” Waste Manage. 28 (10): 1835–1852. https://doi.org/10.1016/j.wasman.2007.09.011.
Sojobi, A., and H. Owamah. 2014. “Evaluation of the suitability of low-density polyethylene (LDPE) waste as fine aggregate in concrete.” Niger. J. Tech. 33 (4): 409–425. https://doi.org/10.4314/njt.v33i4.1.
Tan, T., Y. Li, and J. Yang. 2017. “An experimental study of adhesion between aggregate minerals and asphalt binders using particle probe scanning force microscopy.” In Transactions on engineering technologies: International multiconference of engineers and computerscientists, 109–120. Berlin: Springer.
Tan, T., N. Rahbar, A. Buono, G. Wheeler, and W. Soboyejo. 2011. “Sub-critical crack growth in adhesive/marble interfaces.” Mater. Sci. Eng., A 528 (10–11): 3697–3704. https://doi.org/10.1016/j.msea.2011.01.001.
Tarokh, A., R. Y. Makhnenko, A. Fakhimi, and J. F. Labuz. 2017. “Scaling of the fracture process zone in rock.” Int. J. Fract. 204 (2): 191–204. https://doi.org/10.1007/s10704-016-0172-0.
Tosun, K., B. Felekoğlu, and B. Baradan. 2012. “Multiple cracking response of plasma treated polyethylene fiber reinforced cementitious composites under flexural loading.” Cem. Concr. Compos. 34 (4): 508–520. https://doi.org/10.1016/j.cemconcomp.2011.12.001.
Tsesarsky, M., A. Peled, A. Katz, and I. Anteby. 2013. “Strengthening concrete elements by confinement within textile reinforced concrete (TRC) shells—Static and impact properties.” Constr. Build. Mater. 44 (Jul): 514–523. https://doi.org/10.1016/j.conbuildmat.2013.03.031.
Wang, Y., H. C. Wu, and V. C. Li. 2000. “Concrete reinforcement with recycled fibers.” J. Mater. Civ. Eng. 12 (4): 314–319. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:4(314).
Xu, G., J. Wei, T. Tan, and H. Liu. 2007. “Modelling bond strength of corroded plain bar reinforcement in concrete.” Struct. Concr. 8 (3): 133–138. https://doi.org/10.1680/stco.2007.8.3.133.
Yu, K. Q., J. T. Yu, J. G. Dai, Z. D. Lu, and S. P. Shah. 2018. “Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers.” Constr. Build. Mater. 158 (Jan): 217–227. https://doi.org/10.1016/j.conbuildmat.2017.10.040.
Zapperi, S., C. Castellano, F. Colaiori, and G. Durin. 2005. “Signature of effective mass in crackling-noise asymmetry.” J. Nat. Phys. 1 (1): 46. https://doi.org/10.1038/nphys101.
Zapperi, S., A. Vespignani, and H. E. Stanley. 1997. “Plasticity and avalanche behaviour in microfracturing phenomena.” Nature 388 (6643): 658–660. https://doi.org/10.1038/41737.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 12December 2021

History

Received: Jan 12, 2021
Accepted: Apr 19, 2021
Published online: Sep 28, 2021
Published in print: Dec 1, 2021
Discussion open until: Feb 28, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Dept. of Mechanical Engineering, Univ. of Vermont, 33 Colchester Ave., Burlington, VT 05405. ORCID: https://orcid.org/0000-0002-7567-8938. Email: [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Univ. of Vermont, 33 Colchester Ave., Burlington, VT 05405. ORCID: https://orcid.org/0000-0002-5868-5829. Email: [email protected]
Assistant Professor, Dept. of Mechanical Engineering, 124 Admin Dr., Vermont Technical College, Randolph Center, VT 05061. Email: [email protected]
Mandar Dewoolkar, F.ASCE [email protected]
Professor, Dept. of Civil and Environmental Engineering, Univ. of Vermont, 213 Votey, 33 Colchester Ave., Burlington, VT 05405. Email: [email protected]
Dryver Huston, M.ASCE [email protected]
Professor, Dept. of Mechanical Engineering, Univ. of Vermont, 201E Votey, 33 Colchester Ave., Burlington, VT 05405. Email: [email protected]
Ting Tan, A.M.ASCE [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Univ. of Vermont, 215 Votey, 33 Colchester Ave., Burlington, VT 05405 (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Interfacial Crack Growth Between Nacreous Tablets, Reference Module in Materials Science and Materials Engineering, 10.1016/B978-0-12-822944-6.00096-7, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share