Technical Papers
Sep 24, 2021

Framework for Investigations on Variability in Characteristics and Pozzolanic Reactivity of Sugarcane Bagasse Ash during the Crushing Period

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 12

Abstract

The consistency in the quality of as-such received sugarcane bagasse ash (SCBA) samples produced from the sugar industry throughout the sugarcane crushing period is a crucial aspect from the pretreatment point of view for their use in cement-based products. The majority of the reported research used SCBA samples collected from a single source (sugar plant) and at one time. In view of these unattended facets of SCBA, an organized study (characterization and pozzolanic reactivity through various techniques) in a holistic manner was conducted on as-such received SCBA samples collected from two sugar industries having distinct ash collection systems at frequent intervals throughout the sugarcane crushing period to deduce profound conclusions about the reactivity of SCBA in a particular sugarcane crushing period. The results of this study indicate that the physical and chemical characteristics of as-such received SCBA samples collected from a specific sugar industry in a particular crushing period differed to a reasonable extent. For assessment of the pozzolanic nature of the SCBA samples, it is desirable to perform a strength activity index along with the Frattini test. Based on the study, a simple framework was proposed for assessing the variability in the quality of as-such received SCBA.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors wish to express sincere thanks to Mohanrao Shinde SSK Ltd., Arag, and Sarvoday SSK Ltd., Karandwadi, for providing samples of sugarcane bagasse ash throughout the sugarcane crushing period and explaining the various aspects related to the combustion of sugarcane bagasse. Materials characterization support from the Sophisticated Analytical Instrument Facility and Department of Earth Sciences, IIT Bombay, India, is acknowledged. The authors also wish to thank the Transportation Engineering lab of Walchand College of Engineering, Sangli, Maharashtra, India, for providing the facility of laser particle-size analyzer. Finally, the authors acknowledge the support of TEQIP-III and Walchand College of Engineering, Sangli, Maharashtra, India.

References

Abbas, S., A. Sharif, A. Ahmed, W. Abbass, and S. Shaukat. 2020. “Prospective of sugarcane bagasse ash for controlling the alkali-silica reaction in concrete incorporating reactive aggregates.” Struct. Concr. 21 (2): 781–793. https://doi.org/10.1002/suco.201900284.
Amin, N. 2011a. “Use of bagasse ash in cement and its impact on the mechanical behaviour and chloride resistivity of mortar.” Adv. Cem. Res. 23 (2): 75–80. https://doi.org/10.1680/adcr.9.00023.
Amin, N. 2011b. “Use of bagasse ash in concrete and its impact on the strength and chloride resistivity.” J. Mater. Civ. Eng. 23 (5): 717–720. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000227.
Andreão, P. V., A. R. Suleiman, G. C. Cordeiro, and M. L. Nehdi. 2019a. “Beneficiation of sugarcane bagasse ash: Pozzolanic activity and leaching behavior.” Waste Biomass Valorization 11 (8): 4393–4402. https://doi.org/10.1007/s12649-019-00721-x.
Andreão, P. V., A. R. Suleiman, G. C. Cordeiro, and M. L. Nehdi. 2019b. “Sustainable use of sugarcane bagasse ash in cement-based materials.” Green Mater. 7 (2): 61–70. https://doi.org/10.1680/jgrma.18.00016.
Arif, E., M. W. Clark, and N. Lake. 2016. “Sugar cane bagasse ash from a high efficiency co-generation boiler: Applications in cement and mortar production.” Constr. Build. Mater. 128 (Dec): 287–297. https://doi.org/10.1016/j.conbuildmat.2016.10.091.
Arif, E., M. W. Clark, and N. Lake. 2017. “Sugar cane bagasse ash from a high-efficiency co-generation boiler as filler in concrete.” Constr. Build. Mater. 151 (Oct): 692–703. https://doi.org/10.1016/j.conbuildmat.2017.06.136.
ASTM. 2015. Standard test method for flow of hydraulic cement mortar. ASTM C1437-15. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard test method for density of hydraulic cement. ASTM C188-17. West Conshohocken, PA: ASTM.
ASTM. 2018. Standard test methods for chemical analysis of hydraulic cement. ASTM C114-18. West Conshohocken, PA: ASTM.
ASTM. 2019a. Standard specification for coal fly ash and raw or calcined natural pozzolan for use. ASTM C618-19. West Conshohocken, PA: ASTM.
ASTM. 2019b. Standard test methods for sampling and testing fly ash or natural Pozzolans for use. ASTM C311/C311M-19. West Conshohocken, PA: ASTM.
Athira, G., A. Bahurudeen, P. K. Sahu, M. Santhanam, P. Nanthagopalan, and S. Lalu. 2020. “Effective utilization of sugar industry waste in Indian construction sector: A geospatial approach.” J. Mater. Cycles Waste Manage. 22 (3): 724–736. https://doi.org/10.1007/s10163-019-00963-w.
Bahurudeen, A., D. Kanraj, V. Gokul Dev, and M. Santhanam. 2015. “Performance evaluation of sugarcane bagasse ash blended cement in concrete.” Cem. Concr. Compos. 59 (May): 77–88. https://doi.org/10.1016/j.cemconcomp.2015.03.004.
Bahurudeen, A., A. V. Marckson, A. Kishore, and M. Santhanam. 2014. “Development of sugarcane bagasse ash based portland pozzolana cement and evaluation of compatibility with superplasticizers.” Constr. Build. Mater. 68: 465–475. https://doi.org/10.1016/j.conbuildmat.2014.07.013.
Bahurudeen, A., and M. Santhanam. 2014. “Performance evaluation of sugarcane bagasse ash-based cement for durable concrete.” In Proc., 4th Int. Conf. on the Durability of Concrete Structures, 275–281. West Lafayette, IN: Purdue Univ.
Bahurudeen, A., and M. Santhanam. 2015. “Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash.” Cem. Concr. Compos. 56 (Feb): 32–45. https://doi.org/10.1016/j.cemconcomp.2014.11.002.
Bahurudeen, A., K. Wani, M. A. Basit, and M. Santhanam. 2016. “Assessment of pozzolanic performance of sugarcane bagasse ash.” J. Mater. Civ. Eng. 28 (2): 04015095. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001361.
Batool, F., A. Masood, and M. Ali. 2020. “Characterization of sugarcane bagasse ash as pozzolan and influence on concrete properties.” Arabian J. Sci. Eng. 45 (5): 3891–3900. https://doi.org/10.1007/s13369-019-04301-y.
Batra, V. S., S. Urbonaite, and G. Svensson. 2008. “Characterization of unburned carbon in bagasse fly ash.” Fuel 87 (13–14): 2972–2976. https://doi.org/10.1016/j.fuel.2008.04.010.
Berenguer, R. A., A. P. B. Capraro, M. H. F. de Medeiros, A. M. P. Carneiro, and R. A. De Oliveira. 2020. “Sugar cane bagasse ash as a partial substitute of portland cement: Effect on mechanical properties and emission of carbon dioxide.” J. Environ. Chem. Eng. 8 (2): 103655. https://doi.org/10.1016/j.jece.2020.103655.
BIS (Bureau of Indian Standard). 2015. Ordinary portland cement- specification. IS 269: 2015. New Delhi, India: BIS.
BIS (Bureau of Indian Standard). 2018a. Specification for planetary mixer used in tests of cement and pozzolana. BIS 10890: 2018. New Delhi, India: BIS.
BIS (Bureau of Indian Standard). 2018b. Standard sand for testing cement-specification. IS 650: 2018. New Delhi, India: BIS.
BSI (British Standard Institution). 2011. Methods of testing cement Part 5: Pozzolanicity test for Pozzolanic cement. BS EN 196-5. London: BSI.
Chusilp, N., C. Jaturapitakkul, and K. Kiattikomol. 2009a. “Effects of LOI of ground bagasse ash on the compressive strength and sulfate resistance of mortars.” Constr. Build. Mater. 23 (12): 3523–3531. https://doi.org/10.1016/j.conbuildmat.2009.06.046.
Chusilp, N., C. Jaturapitakkul, and K. Kiattikomol. 2009b. “Utilization of bagasse ash as a pozzolanic material in concrete.” Constr. Build. Mater. 23 (11): 3352–3358. https://doi.org/10.1016/j.conbuildmat.2009.06.030.
Cordeiro, G. C., P. V. Andreão, and L. M. Tavares. 2019. “Pozzolanic properties of ultrafine sugar cane bagasse ash produced by controlled burning.” Heliyon 5 (10): e02566. https://doi.org/10.1016/j.heliyon.2019.e02566.
Cordeiro, G. C., T. R. Barroso, and R. D. Toledo Filho. 2018a. “Enhancement the properties of sugar cane bagasse ash with high carbon content by a controlled re-calcination process.” KSCE J. Civ. Eng. 22 (4): 1250–1257. https://doi.org/10.1007/s12205-017-0881-6.
Cordeiro, G. C., R. D. T. Filho, and E. M. R. Fairbairn. 2008a. “Use of ultra-fine sugar cane bagasse ash as mineral admixture for concrete.” ACI Mater. J. 105 (5): 487–493. https://doi.org/10.14359/19978.
Cordeiro, G. C., R. D. T. Filho, E. M. R. Fairbairn, L. M. M. Tavares, and C. H. Oliveira. 2004. “Influence of mechanical grinding on the pozzolanic activity of residual sugarcane bagasse ash.” In Proc., Int. RILEM Conf. on Use of Recycled Materials in Building and Structures, 731–740. Paris: RILEM Publications SARL.
Cordeiro, G. C., and K. E. Kurtis. 2017. “Effect of mechanical processing on sugar cane bagasse ash pozzolanicity.” Cem. Concr. Res. 97 (Jul): 41–49. https://doi.org/10.1016/j.cemconres.2017.03.008.
Cordeiro, G. C., O. A. Paiva, R. D. Toledo Filho, E. M. R. Fairbairn, and L. M. Tavares. 2018b. “Long-term compressive behavior of concretes with sugarcane bagasse ash as a supplementary cementitious material.” J. Test. Eval. 46 (2): 20160316. https://doi.org/10.1520/JTE20160316.
Cordeiro, G. C., L. M. Tavares, and R. D. Toledo Filho. 2016. “Improved pozzolanic activity of sugar cane bagasse ash by selective grinding and classification.” Cem. Concr. Res. 89 (Nov): 269–275. https://doi.org/10.1016/j.cemconres.2016.08.020.
Cordeiro, G. C., R. D. Toledo Filho, and E. M. R. Fairbairn. 2009a. “Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash.” Constr. Build. Mater. 23 (10): 3301–3303. https://doi.org/10.1016/j.conbuildmat.2009.02.013.
Cordeiro, G. C., R. D. Toledo Filho, L. M. Tavares, and E. M. R. Fairbairn. 2008b. “Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars.” Cem. Concr. Compos. 30 (5): 410–418. https://doi.org/10.1016/j.cemconcomp.2008.01.001.
Cordeiro, G. C., R. D. Toledo Filho, L. M. Tavares, and E. M. R. Fairbairn. 2009b. “Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete.” Cem. Concr. Res. 39 (2): 110–115. https://doi.org/10.1016/j.cemconres.2008.11.005.
Deepika, S., G. Anand, A. Bahurudeen, and M. Santhanam. 2017. “Construction products with sugarcane bagasse ash binder.” J. Mater. Civ. Eng. 29 (10): 04017189. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001999.
Donatello, S., M. Tyrer, and C. R. Cheeseman. 2010a. “Comparison of test methods to assess pozzolanic activity.” Cem. Concr. Compos. 32 (2): 121–127. https://doi.org/10.1016/j.cemconcomp.2009.10.008.
Donatello, S., M. Tyrer, and C. R. Cheeseman. 2010b. “Effect of milling and acid washing on the pozzolanic activity of incinerator sewage sludge ash.” Cem. Concr. Compos. 32 (1): 54–61. https://doi.org/10.1016/j.cemconcomp.2009.09.002.
Frías, M., E. Villar, and H. Savastano. 2011. “Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture.” Cem. Concr. Compos. 33 (4): 490–496. https://doi.org/10.1016/j.cemconcomp.2011.02.003.
Frías, M., and E. Villar-Cociña. 2007. “Influence of calcining temperature on the activation of sugar-cane bagasse: Kinetic parameters.” Adv. Cem. Res. 19 (3): 109–115. https://doi.org/10.1680/adcr.2007.19.3.109.
Ganesan, K., K. Rajagopal, and K. Thangavel. 2007. “Evaluation of bagasse ash as supplementary cementitious material.” Cem. Concr. Compos. 29 (6): 515–524. https://doi.org/10.1016/j.cemconcomp.2007.03.001.
Gartner, E. M., and D. E. MacPhee. 2011. “A physico-chemical basis for novel cementitious binders.” Cem. Concr. Res. 41 (7): 736–749. https://doi.org/10.1016/j.cemconres.2011.03.006.
Gopinath, A., A. Bahurudeen, S. Appari, and P. Nanthagopalan. 2018. “A circular framework for the valorisation of sugar industry wastes: Review on the industrial symbiosis between sugar, construction and energy industries.” J. Cleaner Prod. 203 (Dec): 89–108. https://doi.org/10.1016/j.jclepro.2018.08.252.
Goyal, A., K. Hattori, O. Hidehiko, and A. Muhammad. 2009. “Processing of sugarcane bagasse ash and reactivity of ash-blended cement mortar.” Trans. Jpn. Soc. Irrig. Drain. Rural Eng. 77 (3): 243–251. https://doi.org/10.11408/jsidre.77.243.
Hernandez, J. F. M., B. Middendorf, M. Gehrke, and H. Budelmann. 1998. “Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: Study of the reaction.” Cem. Concr. Res. 28 (11): 1525–1536. https://doi.org/10.1016/S0008-8846(98)00130-6.
ISMA (Indian Sugar Mills Association). 2020. “Indian sugar mills association.” Accessed April 15, 2020. https://www.indiansugar.com/Statics.aspx.
Jagadesh, P., A. Ramachandramurthy, and R. Murugesan. 2018. “Evaluation of mechanical properties of sugar cane bagasse ash concrete.” Constr. Build. Mater. 176 (Jul): 608–617. https://doi.org/10.1016/j.conbuildmat.2018.05.037.
Kazmi, S. M. S., M. J. Munir, I. Patnaikuni, and Y. F. Wu. 2017. “Pozzolanic reaction of sugarcane bagasse ash and its role in controlling alkali silica reaction.” Constr. Build. Mater. 148 (Sep): 231–240. https://doi.org/10.1016/j.conbuildmat.2017.05.025.
Li, X., et al. 2018. “Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1.” Mater. Struct. 51 (6): 151. https://doi.org/10.1617/s11527-018-1269-x.
Mali, A. K., and P. Nanthagopalan. 2020. “A systematic assessment for the determination of sugarcane bagasse ash variation potential throughout the harvesting season.” Mater. Today: Proc. 32 (4): 888–895. https://doi.org/10.1016/j.matpr.2020.04.511.
Maza-Ignacio, O. T., V. G. Jiménez-Quero, J. Guerrero-Paz, and P. Montes-García. 2020. “Recycling untreated sugarcane bagasse ash and industrial wastes for the preparation of resistant, lightweight and ecological fired bricks.” Constr. Build. Mater. 234: 117314. https://doi.org/10.1016/j.conbuildmat.2019.117314.
Mertens, G., R. Snellings, K. Van Balen, B. Bicer-simsir, P. Verlooy, and J. Elsen. 2009. “Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity.” Cem. Concr. Res. 39 (3): 233–240. https://doi.org/10.1016/j.cemconres.2008.11.008.
Montakarntiwong, K., N. Chusilp, W. Tangchirapat, and C. Jaturapitakkul. 2013. “Strength and heat evolution of concretes containing bagasse ash from thermal power plants in sugar industry.” Mater. Des. 49 (Aug): 414–420. https://doi.org/10.1016/j.matdes.2013.01.031.
Morales, E. V., E. Villar-Cociña, M. Frías, S. F. Santos, and H. Savastano. 2009. “Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): Influence in the pozzolanic activation.” Cem. Concr. Compos. 31 (1): 22–28. https://doi.org/10.1016/j.cemconcomp.2008.10.004.
Payá, J., J. Monzó, M. V. Borrachero, L. Díaz-Pinzón, and L. M. Ordónez. 2002. “Sugar-cane bagasse ash (SCBA): Studies on its properties for reusing in concrete production.” J. Chem. Technol. Biotechnol. 77 (3): 321–325. https://doi.org/10.1002/jctb.549.
Rajasekar, A., K. Arunachalam, M. Kottaisamy, and V. Saraswathy. 2018. “Durability characteristics of ultra high strength concrete with treated sugarcane bagasse ash.” Constr. Build. Mater. 171 (May): 350–356. https://doi.org/10.1016/j.conbuildmat.2018.03.140.
Rattanachu, P., W. Tangchirapat, and C. Jaturapitakkul. 2019a. “Water permeability and sulfate resistance of eco-friendly high-strength concrete composed of ground bagasse ash and recycled concrete aggregate.” J. Mater. Civ. Eng. 31 (6): 04019093. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002740.
Rattanachu, P., W. Tangchirapat, C. Jaturapitakkul, and P. Chindaprasirt. 2019b. “Strength, elastic modulus, and creep of high-strength concrete produced with bagasse ash and recycled concrete aggregate.” J. Test. Eval. 49 (2): 17. https://doi.org/10.1520/JTE20180427.
Rerkpiboon, A., W. Tangchirapat, and C. Jaturapitakkul. 2015. “Strength, chloride resistance, and expansion of concretes containing ground bagasse ash.” Constr. Build. Mater. 101 (Dec): 983–989. https://doi.org/10.1016/j.conbuildmat.2015.10.140.
Ribeiro, D. V., and M. R. Morelli. 2014. “Effect of calcination temperature on the pozzolanic activity of Brazilian sugar cane bagasse ash (SCBA).” Mater. Res. 17 (4): 974–981. https://doi.org/10.1590/S1516-14392014005000093.
Rukzon, S., and P. Chindaprasirt. 2012. “Utilization of bagasse ash in high-strength concrete.” Mater. Des. (Feb): 34: 45–50. https://doi.org/10.1016/j.matdes.2011.07.045.
Singh, N. B., V. D. Singh, and S. Rai. 2000. “Hydration of bagasse ash-blended portland cement.” Cem. Concr. Res. 30 (9): 1485–1488. https://doi.org/10.1016/S0008-8846(00)00324-0.
Skibsted, J., and R. Snellings. 2019. “Reactivity of supplementary cementitious materials (SCMs) in cement blends.” Cem. Concr. Res. 124 (Feb): 105799. https://doi.org/10.1016/j.cemconres.2019.105799.
Soares, M. M. N. S., F. S. J. Poggiali, A. C. S. Bezerra, R. B. Figueiredo, M. T. P. Aguilar, and P. R. Cetlin. 2014. “The effect of calcination conditions on the physical and chemical characteristics of sugar cane bagasse ash.” Rem. Rev. Esc. Minas 67 (1): 33–39. https://doi.org/10.1590/S0370-44672014000100005.
Somna, R., C. Jaturapitakkul, and A. M. Made. 2012a. “Effect of ground fly ash and ground bagasse ash on the durability of recycled aggregate concrete.” Cem. Concr. Compos. 34 (7): 848–854. https://doi.org/10.1016/j.cemconcomp.2012.03.003.
Somna, R., C. Jaturapitakkul, P. Rattanachu, and W. Chalee. 2012b. “Effect of ground bagasse ash on mechanical and durability properties of recycled aggregate concrete.” Mater. Des. 36 (Apr): 597–603. https://doi.org/10.1016/j.matdes.2011.11.065.
Tironi, A., M. A. Trezza, A. N. Scian, and E. F. Irassar. 2013. “Assessment of pozzolanic activity of different calcined clays.” Cem. Concr. Compos. 37 (1): 319–327. https://doi.org/10.1016/j.cemconcomp.2013.01.002.
Villar-Cociña, E., M. Frías, J. Hernández-Ruiz, and H. Savastano. 2012. “Pozzolanic behaviour of a bagasse ash from the boiler of a Cuban sugar factory.” Adv. Cem. Res. 25 (3): 136–142. https://doi.org/10.1680/adcr.11.00066.
Villar-Cociña, E., M. F. Rojas, and E. V. Morales. 2008. “Sugar cane wastes as pozzolanic materials: Application of mathematical model.” ACI Mater. J. 105 (3): 258–264.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 12December 2021

History

Received: Jun 10, 2020
Accepted: Apr 15, 2021
Published online: Sep 24, 2021
Published in print: Dec 1, 2021
Discussion open until: Feb 24, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400 076, India (corresponding author). ORCID: https://orcid.org/0000-0001-8963-2693. Email: [email protected]
Associate Professor, Dept. of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400 076, India. ORCID: https://orcid.org/0000-0003-1635-1238. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share