Abstract

Geopolymers exhibit high mechanical performance and low CO2 emissions, and have garnered interest in the construction sector. The brittleness of geopolymer matrices has led to a demand for materials to reinforce them and make them suitable for applications involving tensile or dynamic loading, such as reinforcements produced with 3D printing. However, the durability of polymers currently used in 3D printing in geopolymer matrices is unknown. The properties of polylactic acid (PLA) and poly(ethylene terephthalate)-glycol (PETG), when immersed in an alkaline solution that simulates the pore water of geopolymer matrices, were assessed with weight monitoring, Fourier transform infrared spectroscopy, thermal analysis, and direct tensile tests. The results showed that new carbonyl compounds are formed in the extension of the polymeric chains, which could be associated with the oxidation of the chains. PLA presented a weight loss of 35.83% and a decrease in tensile strength of 45.62%. PETG showed no significant changes in properties, indicating its good durability in geopolymer matrices.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors thank the Bahia Research Foundation (FAPESB), National Counsel of Technological and Scientific Development (Brazil) (CNPq), Coordination of Improvement of Higher Level Personnel (CAPES), Postgraduate Program in Civil Engineering at the Federal University of Bahia (Brazil) (PPEC/UFBA), and the collaboration of researcher João Paulo de Oliveira (PROPCI/UFBA 01/2018 PIBIC).

References

ACI (American Concrete Institute). 2004. Guide test methods for fiber-reinforced polymers (FRPs) for reinforcing or strengthening concrete structures. Farmington Hills, MI: ACI.
ASTM. 2014a. Standard practices for evaluating the resistance of plastics to chemical reagents. West Conshohocken, PA: ASTM.
ASTM. 2014b. Standard test method for tensile properties of plastics. West Conshohocken, PA: ASTM.
ASTM. 2018. Standard test method for enthalpies of fusion and crystallization by differential scanning calorimetry. West Conshohocken, PA: ASTM.
Aygörmez, Y., O. Canpolat, M. Al-mashhadani, and M. Uysal. 2020. “Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites.” Constr. Build. Mater. 235 (Feb): 117502. https://doi.org/10.1016/j.conbuildmat.2019.117502.
Bhutta, A., M. Farooq, C. Zanotti, and N. Banthia. 2017. “Pull-out behavior of different fibers in geopolymer mortars: Effects of alkaline solution concentration and curing.” Mater. Struct. 50 (1): 80. https://doi.org/10.1617/s11527-016-0889-2.
Carrasco, F., P. Pagès, J. Gámez-Pérez, O. O. Santana, and M. L. Maspoch. 2010. “Processing of poly (lactic acid): Characterization of chemical structure, thermal stability and mechanical properties.” Polym. Degrad. Stab. 95 (2): 116–125. https://doi.org/10.1016/j.polymdegradstab.2009.11.045.
Castro-Aguirre, E., F. Iñiguez-Franco, H. Samsudin, X. Fang, and R. Auras. 2016. “Poly (lactic acid): Mass production, processing, industrial applications, and end of life.” Adv. Drug Delivery Rev. 107 (3): 333–366. https://doi.org/10.1016/j.addr.2016.03.010.
Chen, T., W. Zhang, and J. Zhang. 2015. “Alkali resistance of poly (ethylene terephthalate)(PET) and poly (ethylene glycol-co-1, 4-cyclohexanedimethanol terephthalate)(PETG) copolyesters: The role of composition.” Polym. Degrad. Stab. 120 (7): 232–243. https://doi.org/10.1016/j.polymdegradstab.2015.07.008.
De Paoli, M. A. 2009. Degradação e estabilização de polímeros. São Paulo, Brazil: Artliber.
Drumright, R. E., P. R. Gruber, and D. E. Henton. 2000. “Polylactic acid technology.” Adv. Mater. 12 (23): 1841–1846. https://doi.org/10.1002/1521-4095(200012)12:23%3C1841::AID-ADMA1841%3E3.0.CO;2-E.
Farah, S., D. G. Anderson, and R. Langer. 2016. “Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review.” Adv. Drug Delivery Rev. 107 (Dec): 367–392. https://doi.org/10.1016/j.addr.2016.06.012.
Farina, I., F. Fabbrocino, G. Carpentieri, M. Modano, A. Amendola, R. Goodall, L. Feo, and F. Fraternali. 2016. “On the reinforcement of cement mortars through 3D printed polymeric and metallic fibers.” Composites, Part B 90 (Apr): 76–85. https://doi.org/10.1016/j.compositesb.2015.12.006.
Focke, W. W., S. Joseph, J. Grimbeek, G. J. Summers, and G. J. Kretzschmar. 2009. “Mechanical properties of ternary blends of ABS+ HIPS+ PETG.” Polym. Plast. Technol. Eng. 48 (8): 814–820. https://doi.org/10.1080/03602550902994862.
Gao, X., Q. L. Yu, R. Yu, and H. J. H. Brouwers. 2017. “Evaluation of hybrid steel fiber reinforcement in high performance geopolymer composites.” Mater. Struct. 50 (2): 165. https://doi.org/10.1617/s11527-017-1030-x.
Garlotta, D. 2001. “A literature review of poly (lactic acid).” J. Polym. Environ. 9 (2): 63–84. https://doi.org/10.1023/A:1020200822435.
Goncalves, J. R., Y. Boluk, and V. Bindiganavile. 2018. “Crack growth resistance in fibre reinforced alkali-activated fly ash concrete exposed to extreme temperatures.” Mater. Struct. 51 (2): 42. https://doi.org/10.1617/s11527-018-1163-6.
Hambach, M., and D. Volkmer. 2017. “Properties of 3D-printed fiber-reinforced Portland cement paste.” Cem. Concr. Compos. 79 (Jan): 62–70. https://doi.org/10.1016/j.cemconcomp.2017.02.001.
Harris, A. M., and E. C. Lee. 2008. “Improving mechanical performance of injection molded PLA by controlling crystallinity.” J. Appl. Polym. Sci. 107 (4): 2246–2255. https://doi.org/10.1002/app.27261.
Henton, D. E., P. Gruber, J. Lunt, and J. Randall. 2005. “Polylactic acid technology.” Nat. Fibers Biopolym. Biocompos. 16 (23): 527–577.
Inkinen, S., M. Hakkarainen, A. C. Albertsson, and A. Södergård. 2011. “From lactic acid to poly (lactic acid)(PLA): Characterization and analysis of PLA and its precursors.” Biomacromolecules 12 (3): 523–532. https://doi.org/10.1021/bm101302t.
Korniejenko, K., E. Frączek, E. Pytlak, and M. Adamski. 2016. “Mechanical properties of geopolymer composites reinforced with natural fibers.” Procedia Eng. 151 (Jan): 388–393. https://doi.org/10.1016/j.proeng.2016.07.395.
Lam, K. L., A. Bakar, Z. M. Ishak, and J. Karger-Kocsis. 2004. “Amorphous copolyester/polyoxymethylene blends: Thermal, mechanical and morphological properties.” Kautsch. Gummi Kunstst. 57 (11): 570.
Letcher, T., and M. Waytashek. 2014. Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer. New York: ASME.
Ma, G., Z. Li, L. Wang, and G. Bai. 2019. “Micro-cable reinforced geopolymer composite for extrusion-based 3D printing.” Mater. Lett. 235 (9): 144–147. https://doi.org/10.1016/j.matlet.2018.09.159.
Mathew, A. P., K. Oksman, and M. Sain. 2005. “Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC).” J. Appl. Polym. Sci. 97 (5): 2014–2025. https://doi.org/10.1002/app.21779.
Meng, Q., C. Wu, H. Hao, J. Li, P. Wu, Y. Yang, and Z. Wang. 2020. “Steel fibre reinforced alkali-activated geopolymer concrete slabs subjected to natural gas explosion in buried utility tunnel.” Constr. Build. Mater. 246 (Jun): 118447. https://doi.org/10.1016/j.conbuildmat.2020.118447.
Mohajerani, A., D. Suter, T. Jeffrey-Bailey, T. Song, A. Arulrajah, S. Horpibulsuk, and D. Law. 2019. “Recycling waste materials in geopolymer concrete.” Clean Technol. Environ. Policy 21 (3): 493–515. https://doi.org/10.1007/s10098-018-01660-2.
Novais, R. M., J. Carvalheiras, M. N. Capela, M. P. Seabra, R. C. Pullar, and J. A. Labrincha. 2018. “Incorporation of glass fibre fabrics waste into geopolymer matrices: An eco-friendly solution for off-cuts coming from wind turbine blade production.” Constr. Build. Mater. 187 (Oct): 876–883. https://doi.org/10.1016/j.conbuildmat.2018.08.004.
Oliveira, M., E. Santos, A. Araújo, G. J. Fechine, A. V. Machado, and G. Botelho. 2016. “The role of shear and stabilizer on PLA degradation.” Polym. Test. 51 (May): 109–116. https://doi.org/10.1016/j.polymertesting.2016.03.005.
Panda, B., G. B. Singh, C. Unluer, and M. J. Tan. 2019. “Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing.” J. Cleaner Prod. 220 (May): 610–619. https://doi.org/10.1016/j.jclepro.2019.02.185.
Panda, B., C. Unluer, and M. J. Tan. 2018. “Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing.” Cem. Concr. Compos. 94 (Nov): 307–314. https://doi.org/10.1016/j.cemconcomp.2018.10.002.
Pascault, J. P., H. Sautereau, J. Verdu, and R. J. Williams. 2002. Thermosetting polymers. New York: Marcel Dekker.
Peacock, A. J., and A. Calhoun. 2012. Polymer chemistry: Properties and application. Munich, Germany: Carl Hanser Verlag GmbH Co KG.
Perrot, A., D. Rangeard, and A. Pierre. 2016. “Structural built-up of cement-based materials used for 3D-printing extrusion techniques.” Mater. Struct. 49 (4): 1213–1220. https://doi.org/10.1617/s11527-015-0571-0.
Pouhet, R., and M. Cyr. 2016. “Carbonation in the pore solution of metakaolin-based geopolymer.” Cem. Concr. Res. 88 (Oct): 227–235. https://doi.org/10.1016/j.cemconres.2016.05.008.
Provis, J. L., and S. A. Bernal. 2014. “Geopolymers and related alkali-activated materials.” Annu. Rev. Mater. Res. 44 (Jul): 299–327. https://doi.org/10.1146/annurev-matsci-070813-113515.
Räsänen, V., and V. Penttala. 2004. “The pH measurement of concrete and smoothing mortar using a concrete powder suspension.” Cem. Concr. Res. 34 (5): 813–820. https://doi.org/10.1016/j.cemconres.2003.09.017.
Rimpongpisarn, T., W. Wattanathana, K. Sukthavorn, N. Nootsuwan, Y. Hanlumyuang, C. Veranitisagul, and A. Laobuthee. 2019. “Novel luminescent PLA/MgAl2O4: Sm3+ composite filaments for 3D printing application.” Mater. Lett. 237 (Feb): 270–273. https://doi.org/10.1016/j.matlet.2018.11.066.
Rosewitz, J. A., H. A. Choshali, and N. Rahbar. 2019. “Bioinspired design of architected cement-polymer composites.” Cem. Concr. Compos. 96 (Feb): 252–265. https://doi.org/10.1016/j.cemconcomp.2018.12.010.
Santana, H. A., J. S. Andrade Neto, N. S. Amorim Júnior, D. V. Ribeiro, M. S. Cilla, and C. M. Dias. 2020. “Self-compacting geopolymer mixture: Dosing based on statistical mixture design and simultaneous optimization.” Constr. Build. Mater. 249 (Jul): 118677. https://doi.org/10.1016/j.conbuildmat.2020.118677.
Santana, H. A., N. S. A. Júnior, D. V. Ribeiro, M. S. Cilla, and C. M. Dias. 2021. “3D printed mesh reinforced geopolymer: Notched prism bending.” Cem. Concr. Compos. 116 (Feb): 103892. https://doi.org/10.1016/j.cemconcomp.2020.103892.
Santana, L., J. L. Alves, S. Netto, A. Da Costa, and C. Merlini. 2018. “A comparative study between PETG and PLA for 3D printing through thermal, chemical and mechanical characterization.” Matéria (Rio de Janeiro) 23 (4): 12267. https://doi.org/10.1590/s1517-707620180004.0601.
Schliecker, G., C. Schmidt, S. Fuchs, and T. Kissel. 2003. “Characterization of a homologous series of D, L-lactic acid oligomers: A mechanistic study on the degradation kinetics in vitro.” Biomaterials 24 (21): 3835–3844. https://doi.org/10.1016/S0142-9612(03)00243-6.
Senff, L., R. M. Novais, J. Carvalheiras, and J. A. Labrincha. 2020. “Eco-friendly approach to enhance the mechanical performance of geopolymer foams: Using glass fibre waste coming from wind blade production.” Constr. Build. Mater. 239 (Apr): 117805. https://doi.org/10.1016/j.conbuildmat.2019.117805.
Shaikh, F. U. A. 2020. “Tensile and flexural behaviour of recycled polyethylene terephthalate (PET) fibre reinforced geopolymer composites.” Constr. Build. Mater. 245 (Jun): 118438. https://doi.org/10.1016/j.conbuildmat.2020.118438.
Spadea, S., I. Farina, A. Carrafiello, and F. Fraternali. 2015. “Recycled nylon fibers as cement mortar reinforcement.” Constr. Build. Mater. 80 (Apr): 200–209. https://doi.org/10.1016/j.conbuildmat.2015.01.075.
Tekle, B. H., A. Khennane, and O. Kayali. 2016. “Bond properties of sand-coated GFRP bars with fly ash–based geopolymer concrete.” J. Compos. Constr. 20 (5): 04016025. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000685.
Wang, D. K., S. Varanasi, P. M. Fredericks, D. J. Hill, A. L. Symons, A. K. Whittaker, and F. Rasoul. 2013a. “FTIR characterization and hydrolysis of PLA-PEG-PLA based copolyester hydrogels with short PLA segments and a cytocompatibility study.” J. Polym. Sci. Part A: Polym. Chem. 51 (24): 5163–5176. https://doi.org/10.1002/pola.26930.
Wang, X., W. Li, and V. Kumar. 2009. “Creating open-celled solid-state foams using ultrasound.” J. Cell. Plast. 45 (4): 353–369. https://doi.org/10.1177/0021955X09104282.
Wang, X., W. Liu, H. Zhou, B. Liu, H. Li, Z. Du, and C. Zhang. 2013b. “Study on the effect of dispersion phase morphology on porous structure of poly (lactic acid)/poly (ethylene terephthalate glycol-modified) blending foams.” Polymer 54 (21): 5839–5851. https://doi.org/10.1016/j.polymer.2013.08.050.
Wangler, T., N. Roussel, F. P. Bos, T. A. Salet, and R. J. Flatt. 2019. “Digital concrete: A review.” Cem. Concr. Res. 123 (Sep): 105780. https://doi.org/10.1016/j.cemconres.2019.105780.
Wongsa, A., R. Kunthawatwong, S. Naenudon, V. Sata, and P. Chindaprasirt. 2020. “Natural fiber reinforced high calcium fly ash geopolymer mortar.” Constr. Build. Mater. 241 (Apr): 118143. https://doi.org/10.1016/j.conbuildmat.2020.118143.
Xia, M., and J. Sanjayan. 2016. “Method of formulating geopolymer for 3D printing for construction applications.” Mater. Des. 110 (Nov): 382–390. https://doi.org/10.1016/j.matdes.2016.07.136.
Xia, M., and J. G. Sanjayan. 2018. “Methods of enhancing strength of geopolymer produced from powder-based 3D printing process.” Mater. Lett. 227 (Sep): 281–283. https://doi.org/10.1016/j.matlet.2018.05.100.
Ye, H., Y. Zhang, Z. Yu, and J. Um. 2018. “Effects of cellulose, hemicellulose, and lignin on the morphology and mechanical properties of metakaolin-based geopolymer.” Constr. Build. Mater. 173 (Jun): 10–16. https://doi.org/10.1016/j.conbuildmat.2018.04.028.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 11November 2021

History

Received: Nov 5, 2020
Accepted: Mar 30, 2021
Published online: Sep 13, 2021
Published in print: Nov 1, 2021
Discussion open until: Feb 13, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Postgraduate Program in Civil Engineering (PPEC)/Federal Univ. of Bahia/Rua Aristides Novis, 02. Federação, 40210-630, Salvador/BA, Brazil (corresponding author). ORCID: https://orcid.org/0000-0003-1425-9438. Email: [email protected]
José S. Andrade Neto [email protected]
Master Student, Postgraduate Program in Civil Engineering, Construction and Infrastructure (PPGCI)/Federal Univ. of Rio Grande do Sul, Av. Osvaldo Aranha 99, Centro Histórico, 90035-190, Porto Alegre/RS, Brazil. Email: [email protected]
Professor, Dept. de Ciência e Tecnologia dos Materiais/Federal Univ. of Bahia/Rua Aristides Novis, 02. Federação, 40210-630, Salvador/BA, Brazil. ORCID: https://orcid.org/0000-0003-3328-1489. Email: [email protected]
Professor, Dept. de Ciência e Tecnologia dos Materiais/Federal Univ. of Bahia/ Rua Aristides Novis, 02. Federação, 40210-630, Salvador/BA, Brazil. ORCID: https://orcid.org/0000-0001-7984-6620. Email: [email protected]
Professor, Dept. de Ciência e Tecnologia dos Materiais/Federal Univ. of Bahia/Rua Aristides Novis, 02. Federação, 40210-630, Salvador/BA, Brazil. ORCID: https://orcid.org/0000-0001-5104-9240. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Environmental stress cracking of 3D-printed polymers exposed to concrete, Additive Manufacturing, 10.1016/j.addma.2022.103026, 58, (103026), (2022).
  • FFF 3D Printing in Electronic Applications: Dielectric and Thermal Properties of Selected Polymers, Polymers, 10.3390/polym13213702, 13, 21, (3702), (2021).
  • Vegetable fibers behavior in geopolymers and alkali-activated cement based matrices: A review, Journal of Building Engineering, 10.1016/j.jobe.2021.103291, 44, (103291), (2021).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share