Abstract

This work studies the hydration kinetics of portland cement pastes blended with multiwalled carbon nanotubes (MWCNTs) aqueous dispersions. Anionic, cationic, and nonionic surfactants—i.e., surfactants that have different charged functional groups in their structure—were used as dispersing agents. MWCNTs in powder form were dispersed in deionized water with sodium dodecyl sulfate, cetylpyridinium chloride, and triton TX-100. Three concentrations of each surfactant (1, 10, and 100 mM) were tested, and all samples were sonicated until an adequate dispersion degree was obtained. Cement pastes blended with carbon nanotubes were prepared, and their hydration kinetics were studied using the Vicat needle and isothermal calorimetry tests. It was concluded that the effect of MWCNTs on the hydration kinetics of portland cement can be masked by the effect of surfactants used as dispersing agents for the nanotubes in the mixing water.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Abu Al-Rub, R. K., B. M. Tyson, A. Yazdanbakhsh, and Z. Grasley. 2012. “Mechanical properties of nanocomposite cement incorporating surface-treated and untreated carbon nanotubes and carbon nanofibers.” J. Nanomech. Micromech. 2 (Mar): 3–8. https://doi.org/10.1061/%28ASCE%29NM.2153-5477.0000041.
ASTM. 2016. Standard test method for amount of water required for normal consistency of hydraulic cement paste. ASTM C187. West Conshohocken, PA: ASTM.
ASTM. 2019. Standard test methods for time of setting of hydraulic cement by vicat needle. ASTM C191. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard performance specification for hydraulic cement. ASTM C1157/C1157M. West Conshohocken, PA: ASTM.
Bai, Y., I. S. Park, S. J. Lee, T. S. Bae, F. Watari, M. Uo, and M. H. Lee. 2011. “Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent.” Carbon 49 (11): 3663–3671. https://doi.org/10.1016/j.carbon.2011.05.002.
Carisio de Almeida, P., O. A. Mendoza Reales, and R. D. Toledo. 2020. “Evaluation of mechanical properties of cement-based composites with nanomaterials.” In Nanotechnology in cement-based construction, edited by A. D’Alessandro, A. L. Materazzi, and F. Ubertini, 395. Singapore: Jenny Standford Publishing.
Chan, L. Y., and B. Andrawes. 2010. “Finite element analysis of carbon nanotube/cement composite with degraded bond strength.” Comput. Mater. Sci 47 (4): 994–1004. https://doi.org/10.1016/j.commatsci.2009.11.035.
Clark, M. D., S. Subramanian, and R. Krishnamoorti. 2011. “Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes.” J. Colloid Interface Sci. 354 (1): 144–151. https://doi.org/10.1016/j.jcis.2010.10.027.
Cwirzen, A., K. Habermehl-Cwirzen, A. G. Nasibulin, E. I. Kaupinen, P. R. Mudimela, and V. Penttala. 2009. “SEM/AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles.” Mater. Charact. 60 (7): 735–740. https://doi.org/10.1016/j.matchar.2008.11.001.
Grossiord, N., P. Van Der Schoot, J. Meuldijk, and C. E. Koning. 2007. “Determination of the surface coverage of exfoliated carbon nanotubes by surfactant molecules in aqueous solution.” Langmuir ACS J. Surf. Colloids 23 (7): 3646–3653. https://doi.org/10.1021/la062684f.
Han, B., L. Zhang, S. Zeng, S. Dong, X. Yu, R. Yang, and J. Ou. 2017. “Nano-core effect in nano-engineered cementitious composites.” Composites, Part A 95 (Apr): 100–109. https://doi.org/10.1016/j.compositesa.2017.01.008.
Hang, B., S. Ding, J. Wang, and J. Ou. 2019. “Carbon nanotubes-engineered cementitious composites.” In Nano-engineered cementitious composites principles and practices, 729. Berlin: Springer.
Hewlett, P. 2004. Lea’s chemistry of cement and concrete: Science. Edited by P. Hewlett. Amsterdam, Netherlands: Elsevier.
Jiang, L., L. Gao, and J. Sun. 2003. “Production of aqueous colloidal dispersions of carbon nanotubes.” J. Colloid Interface Sci. 260 (1): 89–94. https://doi.org/10.1016/S0021-9797(02)00176-5.
Jung, W. R., J. H. Choi, N. Lee, K. Shin, J.-H. Moon, and Y.-S. Seo. 2012. “Reduced damage to carbon nanotubes during ultrasound-assisted dispersion as a result of supercritical-fluid treatment.” Carbon 50 (2): 633–636. https://doi.org/10.1016/j.carbon.2011.08.075.
Kang, J., S. Al-sabah, and R. Theó. 2020. “Effect of single-walled carbon nanotubes on strength properties of cement composites.” Materials (Basel) 13 (6): 1305. https://doi.org/10.3390/ma13061305.
Kim, D.-Y., Y. S. Yun, H. Bak, S. Y. Cho, and H.-J. Jin. 2010. “Aspect ratio control of acid modified multiwalled carbon nanotubes.” Curr. Appl Phys. 10 (4): 1046–1052. https://doi.org/10.1016/j.cap.2009.12.038.
Kumar, P., and H. B. Bohidar. 2010. “Aqueous dispersion stability of multi-carbon nanoparticles in anionic, cationic, neutral, bile salt and pulmonary surfactant solutions.” Colloids Surf., A 361 (1–3): 13–24. https://doi.org/10.1016/j.colsurfa.2010.03.009.
Li, Y., H. Zhu, C. Yang, Y. Zhang, J. Xu, and M. Lu. 2014. “Synthesis and super retarding performance in cement production of diethanolamine modified lignin surfactant.” Constr. Build. Mater. 52 (Feb): 116–121. https://doi.org/10.1016/j.conbuildmat.2013.09.024.
Liebscher, M., A. Lange, C. Schröfl, R. Fuge, V. Mechtcherine, J. Plank, and A. Leonhardt. 2017. “Impact of the molecular architecture of polycarboxylate superplasticizers on the dispersion of multi-walled carbon nanotubes in aqueous phase.” J. Mater. Sci. 52 (4): 2296–2307. https://doi.org/10.1007/s10853-016-0522-3.
Lin, D., N. Liu, K. Yang, B. Xing, and F. Wu. 2010. “Different stabilities of multiwalled carbon nanotubes in fresh surface water samples.” Environ. Pollut. 158 (5): 1270–1274. https://doi.org/10.1016/j.envpol.2010.01.020.
Ludvig, P., J. M. Calixto, L. O. Ladeira, and I. C. P. Gaspar. 2011. “Using converter dust to produce low cost cementitious composites by in situ carbon nanotube and nanofiber synthesis.” Materials (Basel) 4 (3): 575–584. https://doi.org/10.3390/ma4030575.
Makar, J. M., and G. W. Chan. 2009. “Growth of cement hydration products on single-walled carbon nanotubes.” J. Am. Ceram. Soc. 92 (6): 1303–1310. https://doi.org/10.1111/j.1551-2916.2009.03055.x.
Melo, V. S., J. M. F. Calixto, L. O. Ladeira, and A. P. Silva. 2012. “Macro- and micro-characterization of mortars produced with carbon nanotubes.” ACI Mater. J. 108 (3): 327–332.
Mendoza, O., G. Sierra, and J. I. Tobón. 2013. “Influence of super plasticizer and Ca(OH)2 on the stability of functionalized multi-walled carbon nanotubes dispersions for cement composites applications.” Constr. Build. Mater. 47 (Oct): 771–778. https://doi.org/10.1016/j.conbuildmat.2013.05.100.
Mendoza, O., and R. Toledo. 2016. “Nanotube–cement composites.” In Vol. 2 of Carbon nanomaterials sourcebook: Nanoparticles, nanocapsules, nanofibers, nanoporous structures, and nanocomposites, edited by K. Sattler, 573–596. Boca Raton, FL: CRC Press.
Mendoza Reales, O. A., and R. Dias Toledo Filho. 2017. “A review on the chemical, mechanical and microstructural characterization of carbon nanotubes-cement based composites.” Constr. Build. Mater. 154 (Nov): 697–710. https://doi.org/10.1016/j.conbuildmat.2017.07.232.
Mendoza-Reales, O. A., Y. P. Arias Jaramillo, J. C. Ochoa Botero, C. A. Delgado, J. H. Quintero, and R. D. Toledo. 2018. “Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes.” Cem. Concr. Res. 107 (May): 101–109. https://doi.org/10.1016/j.cemconres.2018.02.020.
Morsy, M. S., S. H. Alsayed, and M. Aqel. 2011. “Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar.” Constr. Build. Mater. 25 (1): 145–149. https://doi.org/10.1016/j.conbuildmat.2010.06.046.
Musso, S., J.-M. Tulliani, G. Ferro, and A. Tagliaferro. 2009. “Influence of carbon nanotubes structure on the mechanical behavior of cement composites.” Compos. Sci. Technol. 69 (11–12): 1985–1990. https://doi.org/10.1016/j.compscitech.2009.05.002.
Park, H. J., M. Park, J. Y. Chang, and H. Lee. 2008. “The effect of pre-treatment methods on morphology and size distribution of multi-walled carbon nanotubes.” Nanotechnology 19 (33): 335702. https://doi.org/10.1088/0957-4484/19/33/335702.
Peng, X., J. Jia, X. Gong, Z. Luan, and B. Fan. 2009. “Aqueous stability of oxidized carbon nanotubes and the precipitation by salts.” J. Hazard. Mater. 165 (1–3): 1239–1242. https://doi.org/10.1016/j.jhazmat.2008.10.049.
Rastogi, R., R. Kaushal, S. K. Tripathi, A. L. Sharma, I. Kaur, and L. M. Bharadwaj. 2008. “Comparative study of carbon nanotube dispersion using surfactants.” J. Colloid Interface Sci. 328 (2): 421–428. https://doi.org/10.1016/j.jcis.2008.09.015.
Rausch, J., R.-C. Zhuang, and E. Mäder. 2010. “Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media.” Composites, Part A 41 (9): 1038–1046. https://doi.org/10.1016/j.compositesa.2010.03.007.
Scrivener, K. L., P. Juilland, and P. J. M. Monteiro. 2015. “Advances in understanding hydration of Portland cement.” Cem. Concr. Res. 78 (Dec): 38–56. https://doi.org/10.1016/j.cemconres.2015.05.025.
Sindu, B. S., and S. Sasmal. 2017. “Properties of carbon nanotube reinforced cement composite synthesized using different types of surfactants.” Constr. Build. Mater. 155 (Nov): 389–399. https://doi.org/10.1016/j.conbuildmat.2017.08.059.
Srinivasan, S., S. A. Barbhuiya, D. Charan, and S. P. Pandey. 2010. “Characterising cement–superplasticiser interaction using zeta potential measurements.” Constr. Build. Mater. 24 (12): 2517–2521. https://doi.org/10.1016/j.conbuildmat.2010.06.005.
Tan, Y., and D. E. Resasco. 2005. “Dispersion of single-walled carbon nanotubes of narrow diameter distribution.” J. Phys. Chem. B 109 (30): 14454–14460. https://doi.org/10.1021/jp052217r.
Uchikawa, H., S. Hanehara, and D. Sawaki. 1997. “The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture.” Cem. Concr. Res. 27 (1): 37–50. https://doi.org/10.1016/S0008-8846(96)00207-4.
Wang, H. 2009. “Dispersing carbon nanotubes using surfactants.” Curr. Opin. Colloid Interface Sci. 14 (5): 364–371. https://doi.org/10.1016/j.cocis.2009.06.004.
Yu, J., N. Grossiord, C. Koning, and J. Loos. 2007. “Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution.” Carbon 45 (3): 618–623. https://doi.org/10.1016/j.carbon.2006.10.010.
Zhang, R., and P. Somasundaran. 2006. “Advances in adsorption of surfactants and their mixtures at solid/solution interfaces.” Adv. Colloid Interface Sci. 123–126 (Nov): 213–229. https://doi.org/10.1016/j.cis.2006.07.004.
Zhang, S., F. Lu, and L. Zheng. 2011. “Dispersion of multiwalled carbon nanotubes (MWCNTs) by ionic liquid-based Gemini pyrrolidinium surfactants in aqueous solution.” Colloid Polym. Sci. 289 (17–18): 1815–1819. https://doi.org/10.1007/s00396-011-2500-2.
Zhang, T., S. Shang, F. Yin, A. Aishah, A. Salmiah, and T. L. Ooi. 2001. “Adsorptive behavior of surfactants on surface of Portland cement.” Cem. Concr. Res. 31 (7): 1009–1015. https://doi.org/10.1016/S0008-8846(01)00511-7.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 11November 2021

History

Received: Apr 28, 2020
Accepted: Mar 24, 2021
Published online: Sep 11, 2021
Published in print: Nov 1, 2021
Discussion open until: Feb 11, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Oscar Aurelio Mendoza Reales, D.Sc. https://orcid.org/0000-0002-4241-1321 [email protected]
Professor, Programa de Engenharia Civil/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brasil (corresponding author). ORCID: https://orcid.org/0000-0002-4241-1321. Email: [email protected]
Professor, Escuela de Construcción, Universidad Nacional de Colombia, Bogotá 050034, Colombia. ORCID: https://orcid.org/0000-0002-8988-6295. Email: [email protected]
Cáterin Ocampo [email protected]
Student, Escuela de Construcción, Universidad Nacional de Colombia, Bogotá 050034, Colombia. Email: [email protected]
Juan Carlos Ochoa Botero, Ph.D. [email protected]
Professor, Escuela de Construcción, Universidad Nacional de Colombia, Bogotá 050034, Colombia. Email: [email protected]
Jorge Hernán Quintero, Ph.D. [email protected]
Professor, Escuela de Física, Universidad Industrial de Santander, Bucaramanga, Santander 680002, Colombia. Email: [email protected]
Romildo Dias Toledo Filho, D.Sc. [email protected]
Professor, Programa de Engenharia Civil/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brasil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Cement Compositions Modified with Dispersed Magnesium Silicate Dihydrate- and Carbon-Based Additives, Construction Materials, 10.3390/constrmater2020008, 2, 2, (101-113), (2022).
  • Nanomaterials in recycled aggregates concrete applications: mechanical properties and durability. A review, Cogent Engineering, 10.1080/23311916.2022.2122885, 9, 1, (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share