Technical Papers
Sep 9, 2021

Shear Strength Enhancement Prediction of Sand–Fiber Mixtures Using Genetic Expression Programming

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 11

Abstract

A series of direct shear tests were conducted on fine, medium, and coarse sand–fiber mixtures subjected to normal pressures of 100, 200, and 300 kPa. Soils were mixed with 0.1%, 0.2%, and 0.3% fibers 6, 12, and 18 mm in length to assess their effects on shear strength characteristics of samples with 70% relative density. Genetic expression programming (GEP) was also evolved to envisage strengths and strains of sand–fiber mixtures. Test results showed that in general, fiber inclusion improves composite characteristics with fine sand–fiber mixtures showing the greatest enhancements in shear strengths. Inclusion of 6 and 12 mm fibers in coarse sand failed to improve strength characteristics due to the inadequate anchorage length and ineffective interactions with grains. Amid the factors investigated, fiber length and concentration, normal stress, and gradation proved to be the most influential. GEP results revealed high accuracy with coefficients of determination of 0.945 and 0.951 for training and testing phases, respectively, and sensitivity analysis illustrated that interaction is most sensitive to fiber length and the coefficient of curvature.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request, including the GEP model.

References

Abdi, M. R., P. Nakhaei, and M. S. S. Gonbad. 2020. “Prediction of enhanced soil-anchored geogrid interactions in direct shear mode using gene expression programming.” Geotech. Geol. Eng. 39 (2): 1–16. https://doi.org/10.1007/s10706-020-01537-6.
Abdi, M. R., A. Sadrnejad, and M. A. Arjomand. 2009a. “Strength enhancement of clay by encapsulating geogrids in thin layers of sand.” Geotext. Geomembr. 27 (6): 447–455. https://doi.org/10.1016/j.geotexmem.2009.06.001.
Abdi, M. R., S. A. Sadrnejad, and M. A. Arjomand. 2009b. “Clay reinforcement using geogrid embedded in thin layers of sand.” IJCE 7 (4): 224–235.
Abdi, M. R., and M. Safdari Seh Gonbad. 2020. “Enhancement of soil–geogrid interactions in direct shear mode using attached elements as anchors.” Eur. J. Environ. Civ. Eng. 24 (8): 1161–1179. https://doi.org/10.1080/19648189.2018.1454861.
Ahmad, F., F. Bateni, and M. Azmi. 2010. “Performance evaluation of silty sand reinforced with fibers.” Geotext. Geomembr. 28 (1): 93–99. https://doi.org/10.1016/j.geotexmem.2009.09.017.
Akbulut, S., S. Arasan, and E. Kalkan. 2007. “Modification of clayey soils using scrap tire rubber and synthetic fibers.” Appl. Clay Sci. 38 (1–2): 23–32. https://doi.org/10.1016/j.clay.2007.02.001.
Alavi, A. H., A. H. Gandomi, M. Modaresnezhad, and M. Mousavi. 2011. “New ground-motion prediction equations using multi expression programing.” J. Earthquake Eng. 15 (4): 511–536. https://doi.org/10.1080/13632469.2010.526752.
Al-Refeai, T. O. 1991. “Behavior of granular soils reinforced with discrete randomly oriented inclusions.” Geotext. Geomembr. 10 (4): 319–333. https://doi.org/10.1016/0266-1144(91)90009-L.
Amini, P. F., and R. Noorzad. 2018. “Energy-based evaluation of liquefaction of fiber-reinforced sand using cyclic triaxial testing.” Soil Dyn. Earthquake Eng. 104 (Jan): 45–53. https://doi.org/10.1016/j.soildyn.2017.09.026.
Anagnostopoulos, C. A., T. T. Papaliangas, D. Konstantinidis, and C. Patronis. 2013. “Shear strength of sands reinforced with polypropylene fibers.” Geotech. Geol. Eng. 31 (2): 401–423. https://doi.org/10.1007/s10706-012-9593-3.
Aouali, N., I. Benessalah, A. Arab, B. Ali, and M. Abed. 2019. “Shear strength response of fibre reinforced Chlef (Algeria) silty sand: Laboratory study.” Geotech. Geol. Eng. 37 (2): 1047–1057. https://doi.org/10.1007/s10706-018-0641-5.
ASTM. 2007. Standard test method for particle-size analysis of soils. West Conshohocken, PA: ASTM.
ASTM. 2011. Standard test method for direct shear test of soils under consolidated drained conditions. West Conshohocken, PA: ASTM.
ASTM. 2016a. Standard test methods for maximum index density and unit weight of soils using a vibratory table. West Conshohocken, PA: ASTM.
ASTM. 2016b. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard practice for classification of soils for engineering purposes (unified soil classification system). West Conshohocken, PA: ASTM.
Bai, Y., J. Liu, Z. Song, F. Bu, C. Qi, and W. Qian. 2019. “Effects of polypropylene fiber on the liquefaction resistance of saturated sand in ring shear tests.” Appl. Sci. 9 (19): 4078. https://doi.org/10.3390/app9194078.
Baykasoğlu, A., H. Güllü, H. Çanakçı, and L. Özbakır. 2008. “Prediction of compressive and tensile strength of limestone via genetic programming.” Expert Syst. Appl. 35 (1–2): 111–123. https://doi.org/10.1016/j.eswa.2007.06.006.
Changizi, F., and A. Haddad. 2015. “Strength properties of soft clay treated with mixture of nano-SiO2 and recycled polyester fiber.” J. Rock Mech. Geol. Eng. 7 (4): 367–378. https://doi.org/10.1016/j.jrmge.2015.03.013.
Chegenizadeh, A., M. Keramatikerman, and H. Nikraz. 2018. “Liquefaction resistance of fiber reinforced low-plasticity silt.” Soil Dyn. Earthquake Eng. 104 (Jan): 372–377. https://doi.org/10.1016/j.soildyn.2017.11.004.
Chen, L., C. H. Kou, and S. W. Ma. 2014. “Prediction of slump flow of high-performance concrete via parallel hyper-cubic gene-expression programming.” Eng. Appl. Artif. Intell. 34 (Sep): 66–74. https://doi.org/10.1016/j.engappai.2014.05.005.
Chen, M., S. L. Shen, A. Arulrajah, H. N. Wu, D. W. Hou, and Y. S. Xu. 2015. “Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay.” Geotext. Geomembr. 43 (6): 515–523. https://doi.org/10.1016/j.geotexmem.2015.05.004.
Dos Santos, A. S., N. C. Consoli, and B. A. Baudet. 2010. “The mechanics of fibre-reinforced sand.” Géotechnique 60 (10): 791–799. https://doi.org/10.1680/geot.8.P.159.
Elbaz, K., S. L. Shen, W. J. Sun, Z. Y. Yin, and A. Zhou. 2020. “Prediction model of shield performance during tunneling via incorporating improved particle swarm optimization into ANFIS.” IEEE Access 8 (Feb): 39659–39671. https://doi.org/10.1109/ACCESS.2020.2974058.
Elbaz, K., S. L. Shen, A. Zhou, Z. Y. Yin, and H. M. Lyu. 2021. “Prediction of disc cutter life during shield tunneling with AI via the incorporation of a genetic algorithm into a GMDH-type neural network.” Engineering 7 (2): 238–251. https://doi.org/10.1016/j.eng.2020.02.016.
Ferreira, C. 2001. “Gene expression programming: A new adaptive algorithm for solving problems.” Complex Syst. 13 (2): 87–129.
Gao, M. Y., N. Zhang, S. L. Shen, and A. Zhou. 2020. “Real-time dynamic earth-pressure regulation model for shield tunneling by integrating GRU deep learning method with GA optimization.” IEEE Access 8 (Mar): 64310–64323. https://doi.org/10.1109/ACCESS.2020.2984515.
Ghani, A. A., and H. M. Azamathulla. 2011. “Gene-expression programming for sediment transport in sewer pipe systems.” J. Pipeline Syst. Eng. Pract. 2 (3): 102–106. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000076.
Güllü, H. 2012. “Prediction of peak ground acceleration by genetic expression programming and regression: A comparison using likelihood-based measure.” Eng. Geol. 141 (Jul): 92–113. https://doi.org/10.1016/j.enggeo.2012.05.010.
Güllü, H. 2014. “Function finding via genetic expression programming for strength and elastic properties of clay treated with bottom ash.” Eng. Appl. Artif. Intell. 35 (Oct): 143–157. https://doi.org/10.1016/j.engappai.2014.06.020.
Guven, A., and N. E. Talu. 2010. “Gene expression programing for estimating suspended sediment yield in Middle Euphrates Basin, Turkey.” Clean (Weinh) 38 (12): 1159–1168. https://doi.org/10.1002/clen.201000003.
Hamidi, A., and M. Hooresfand. 2013. “Effect of fiber reinforcement on triaxial shear behavior of cement treated sand.” Geotext. Geomembr. 36: 1–9. https://doi.org/10.1016/j.geotexmem.2012.10.005.
Jiang, H., Y. Cai, and J. Liu. 2010. “Engineering properties of soils reinforced by short discrete polypropylene fiber.” J. Mater. Civ. Eng. 22 (12): 1315–1322. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000129.
Johari, A., G. Habibagahi, and A. Ghahramani. 2006. “Prediction of soil–water characteristic curve using genetic programming.” J. Geotech. Geoenviron. Eng. 132 (5): 661–665. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(661).
Khebizi, W., N. Della, S. Denine, J. Canou, and J. C. Dupla. 2019. “Undrained behaviour of polypropylene fibre reinforced sandy soil under monotonic loading.” Geomech. Geoeng. 14 (1): 30–40. https://doi.org/10.1080/17486025.2018.1508855.
Kumar, R., V. K. Kanaujia, and D. Chandra. 1999. “Engineering behavior of fiber-reinforced pond ash and silty sand.” Geosynth. Int. 6 (6): 509–518. https://doi.org/10.1680/gein.6.0162.
Li, J., C. Tang, D. Wang, X. Pei, and B. Shi. 2014. “Effect of discrete fibre reinforcement on soil tensile strength.” J. Rock Mech. Geotech. Eng. 6 (2): 133–137. https://doi.org/10.1016/j.jrmge.2014.01.003.
Li, Y., X. Ling, L. Su, L. An, P. Li, and Y. Zhao. 2018. “Tensile strength of fiber reinforced soil under freeze-thaw condition.” Cold Reg. Sci. Technol. 146 (Feb): 53–59. https://doi.org/10.1016/j.coldregions.2017.11.010.
Lin, S. S., S. L. Shen, A. Zhou, and Y. S. Xu. 2021. “Novel model for risk identification during karst excavation.” Reliab. Eng. Syst. Saf. 209 (May): 107435. https://doi.org/10.1016/j.ress.2021.107435.
Liu, J., Z. Chen, Z. Song, Y. Bai, W. Qian, J. Wei, and D. P. Kanungo. 2018. “Tensile behavior of polyurethane organic polymer and polypropylene fiber-reinforced sand.” Polymers (Basel) 10 (5): 499. https://doi.org/10.3390/polym10050499.
Liu, J., Y. Wang, D. P. Kanungo, J. Wei, Y. Bai, D. Li, Z. Song, and Y. Lu. 2019. “Study on the brittleness characteristics of sand reinforced with polypropylene fiber and polyurethane organic polymer.” Fibers Polym. 20 (3): 620–632. https://doi.org/10.1007/s12221-019-8779-1.
Maher, M. H., and D. H. Gray. 1990. “Static response of sands reinforced with randomly distributed fibers.” J. Geotech. Eng. 116 (11): 1661–1677. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:11(1661).
Michalowski, R. L., and J. Cermak. 2002. “Strength anisotropy of fiber-reinforced sand.” Comput. Geotech. 29 (4): 279–299. https://doi.org/10.1016/S0266-352X(01)00032-5.
Michalowski, R. L., and J. Cermák. 2003. “Triaxial compression of sand reinforced with fibers.” J. Geotech. Geoenviron. Eng. 129 (2): 125–136. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:2(125).
Nelson, M. M., and W. T. Illingworth. 1991. A practical guide to neural nets. Boston: Addison-Wesley.
Noorzad, R., and P. F. Amini. 2014. “Liquefaction resistance of Babolsar sand reinforced with randomly distributed fibers under cyclic loading.” Soil Dyn. Earthquake Eng. 66 (Nov): 281–292. https://doi.org/10.1016/j.soildyn.2014.07.011.
Noorzad, R., and S. T. G. Zarinkolaei. 2015. “Comparison of mechanical properties of fiber-reinforced sand under triaxial compression and direct shear.” Open Geosci. 7 (1): 547–558. https://doi.org/10.1515/geo-2015-0041.
Patel, S. K., and B. Singh. 2020. “A comparative study on shear strength and deformation behavior of clayey and sandy soils reinforced with glass fibre.” Geotech. Geol. Eng. 38 (Oct): 4831–4845. https://doi.org/10.1007/s10706-020-01330-5.
Peng, Y., C. Yuan, X. Qin, J. Huang, and Y. Shi. 2014. “An improved gene expression programming approach for symbolic regression problems.” Neurocomputing 137 (Aug): 293–301. https://doi.org/10.1016/j.neucom.2013.05.062.
Pino, L. F. M., and B. A. Baudet. 2015. “The effect of the particle size distribution on the mechanics of fibre-reinforced sands under one-dimensional compression.” Geotext. Geomembr. 43 (3): 250–258. https://doi.org/10.1016/j.geotexmem.2015.02.004.
Pradhan, P. K., R. K. Kar, and A. Naik. 2012. “Effect of random inclusion of polypropylene fibers on strength characteristics of cohesive soil.” Geotech. Geol. Eng. 30 (1): 15–25. https://doi.org/10.1007/s10706-011-9445-6.
Ranjan, G., R. M. Vasan, and H. D. Charan. 1996. “Probabilistic analysis of randomly distributed fiber-reinforced soil.” J. Geotech. Eng. 122 (6): 419–426. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:6(419).
Sadek, S., S. S. Najjar, and F. Freiha. 2010. “Shear strength of fiber-reinforced sands.” J. Geotech. Geoenviron. Eng. 136 (3): 490–499. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000235.
Shao, W., B. Cetin, Y. Li, J. Li, and L. Li. 2014. “Experimental investigation of mechanical properties of sands reinforced with discrete randomly distributed fiber.” Geotech. Geol. Eng. 32 (4): 901–910. https://doi.org/10.1007/s10706-014-9766-3.
Sharma, V., and A. Kumar. 2017. “Strength and bearing capacity of ring footings resting on fibre-reinforced sand.” Int. J. Geosynth. Ground Eng. 3 (1): 1–17. https://doi.org/10.1007/s40891-017-0086-6.
Shiri, J., A. A. Sadraddini, A. H. Nazemi, O. Kisi, G. Landeras, A. F. Fard, and P. Marti. 2014. “Generalizability of gene expression programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran.” J. Hydrol. 508 (Jan): 1–11. https://doi.org/10.1016/j.jhydrol.2013.10.034.
Sivakumar Babu, G. L., and A. K. Vasudevan. 2008. “Strength and stiffness response of coir fiber-reinforced tropical soil.” J. Mater. Civ. Eng. 20 (9): 571–577. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:9(571).
Swingler, K. 1996. Applying neural networks: A practical guide. Burlington, CA: Morgan Kaufmann.
Tang, C., B. Shi, W. Gao, F. Chen, and Y. Cai. 2007. “Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil.” Geotext. Geomembr. 25 (3): 194–202. https://doi.org/10.1016/j.geotexmem.2006.11.002.
Wang, Y. X., P. P. Guo, W. X. Ren, B. X. Yuan, H. P. Yuan, Y. L. Zhao, S. S. Shan, and P. Cao. 2017. “Laboratory investigation on strength characteristics of expansive soil treated with jute fiber reinforcement.” Int. J. Geomech. 17 (11): 04017101. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000998.
Wei, H., T. Zhao, Q. Meng, X. Wang, and J. He. 2018. “Experimental evaluation of the shear behavior of fiber-reinforced calcareous sands.” Int. J. Geomech. 18 (12): 04018175. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001307.
Yetimoglu, T., and O. Salbas. 2003. “A study on shear strength of sands reinforced with randomly distributed discrete fibers.” Geotext. Geomembr. 21 (2): 103–110. https://doi.org/10.1016/S0266-1144(03)00003-7.
Zhang, N., S. L. Shen, A. Zhou, and Y. F. Jin. 2021. “Application of LSTM approach for modelling stress-strain behavior of soil.” Appl. Soft Comput. 100 (Mar): 106959. https://doi.org/10.1016/j.asoc.2020.106959.
Zornberg, J. G. 2002. “Discrete framework for limit equilibrium analysis of fibre-reinforced soil.” Géotechnique. 52 (8): 593–604. https://doi.org/10.1680/geot.2002.52.8.593.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 11November 2021

History

Received: Dec 9, 2020
Accepted: Mar 24, 2021
Published online: Sep 9, 2021
Published in print: Nov 1, 2021
Discussion open until: Feb 9, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Mahmood Reza Abdi [email protected]
Associate Professor, Faculty of Civil Engineering, K.N. Toosi Univ. of Technology, P.O. Box 15875-4416, Tehran 19967-15433, Iran (corresponding author). Email: [email protected]
Postgraduate Student, Faculty of Civil Engineering, K.N. Toosi Univ. of Technology, P.O. Box 15875-4416, Tehran 19967-15433, Iran. ORCID: https://orcid.org/0000-0002-8625-3572. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Effects of binder types and other significant variables on the unconfined compressive strength of chemical-stabilized clayey soil using gene-expression programming, Neural Computing and Applications, 10.1007/s00521-022-06931-0, 34, 11, (9103-9121), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share