Technical Papers
Sep 6, 2021

Investigating the Performance of Nano-Modified Asphalt Binders Incorporated with Warm Mix Additives

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 11

Abstract

The current investigation presents a laboratory assessment of the physical and rheological properties of control and nanosilica-modified asphalt binders incorporated with warm mix additives (WMAs). Nanosilica can be produced from rice husk and silica fumes and therefore is a cost-effective and environment-friendly asphalt modifier. Fisher-Tropsch wax (FT wax) and organosilane additive were the two WMAs utilized in the current study. The study utilized three concentrations for each additive. Rutting evaluation of the asphalt binders was done through Superpave rutting and the multiple stress creep and recovery (MSCR) test. The fatigue performance was evaluated utilizing the Superpave fatigue test and the linear amplitude sweep (LAS) test. The results of this study revealed that adding WMAs decreased the viscosity of the control and nanosilica-modified asphalt binders. The asphalt binder showed an improved elevated temperature performance after the incorporation of WMA additives. The incorporation of WMA additives enhanced the resistance against fatigue cracking as revealed by the LAS test. The resistance to aging was enhanced after the addition of warm mix additives.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

AASHTO. 2011. “Standard specifications for transportation materials and methods of sampling and testing. Washington, DC: AASHTO.
AASHTO. 2014. Standard method of test for estimating damage tolerance of asphalt binders using the linear amplitude sweep. AASHTO TP 101-14. Washington, DC: AASHTO.
Abed, A., N. Thom, D. Lo Presti, and G. Airey. 2020. “Thermo-rheological analysis of WMA-additive modified binders.” Mater. Struct. 53 (3): 1–13. https://doi.org/10.1617/s11527-020-01480-1.
Akisetty, C. K., S. J. Lee, and S. N. Amirkhanian. 2009. “High temperature properties of rubberized binders containing warm asphalt additives.” Constr. Build. Mater. 23 (1): 565–573. https://doi.org/10.1016/j.conbuildmat.2007.10.010.
Anderson, D. A., D. W. Christensen, H. U. Bahia, R. Dongre, M. G. Sharma, C. E. Antle, and J. Button. 1994. Binder characterization and evaluation. Volume 3: Physical characterization. Washington, DC: National Research Council.
Arega, Z., A. Bhasin, A. Motamed, and F. Turner. 2011. “Influence of warm-mix additives and reduced aging on the rheology of asphalt binders with different natural wax contents.” J. Mater. Civ. Eng. 23 (10): 1453–1459. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000315.
Ashish, P. K., D. Singh, and S. Bohm. 2017. “Investigation on influence of nanoclay addition on rheological performance of asphalt binder.” Road Mater. Pavement Des. 18 (5): 1007–1026. https://doi.org/10.1080/14680629.2016.1201522.
ASTM. 2006. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. ASTM D4402. West Conshohocken, PA: ASTM.
ASTM. 2015a. Standard test method for determining the rheological properties of asphalt binder using a dynamic shear rheometer. ASTM D7175. West Conshohocken, PA: ASTM.
ASTM. 2015b. Standard test method for multiple stress creep and recovery (MSCR) of asphalt binder using a dynamic shear rheometer. ASTM D7405. West Conshohocken, PA: ASTM.
ASTM. 2019. Standard practice for accelerated aging of asphalt binder using a pressurized aging vessel (PAV). ASTM D6521. West Conshohocken, PA: ASTM.
ASTM. 2020a. Effects of heat and air on asphaltic materials (thin-film oven test) 1. ASTM D1754/D1754M. West Conshohocken, PA: ASTM.
ASTM. 2020b. Standard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR). ASTM D7405. West Conshohocken, PA: ASTM.
Babagoli, R. 2020. “Investigation of the high-temperature behavior of asphalt binders modified by warm additives through performance grade and multiple stress creep and recovery system.” J. Mater. Civ. Eng. 32 (2): 04019344. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002997.
Banerjee, A., A. De Fortier Smit, and J. A. Prozzi. 2012. “The effect of long-term aging on the rheology of warm mix asphalt binders.” Fuel 97 (Jul): 603–611. https://doi.org/10.1016/j.fuel.2012.01.072.
Behnood, A., and M. Modiri Gharehveran. 2019. “Morphology, rheology, and physical properties of polymer-modified asphalt binders.” Eur. Polym. J. 112 (Mar): 766–791. https://doi.org/10.1016/j.eurpolymj.2018.10.049.
Bhanuprasad, K., W. R. Akshay, K. SaiKubair, and R. Sridhar. 2021. “RAP-added SMA mixtures: How do they fare?” J. Mater. Civ. Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003807.
Bhat, F. S., and M. S. Mir. 2019. “Performance evaluation of nanosilica-modified asphalt binder.” Innovative Infrastruct. Solutions 4 (1): 63. https://doi.org/10.1007/s41062-019-0249-5.
Bhat, F. S., and M. S. Mir. 2020. “Investigating the effects of nano Al2O3 on high and intermediate temperature performance properties of asphalt binder.” Road Mater. Pavement Des. 1–22. https://doi.org/10.1080/14680629.2020.1778509.
Bhat, F. S., and M. S. Mir. 2021. “Rheological investigation of asphalt binder modified with nanosilica.” Int. J. Pavement Res. Technol. 14 (3): 276–287. https://doi.org/10.1007/s42947-020-0327-2.
Biro, S., T. Gandhi, and S. Amirkhanian. 2009. “Midrange temperature rheological properties of warm asphalt binders.” J. Mater. Civ. Eng. 21 (7): 316–323. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:7(316).
BIS (Bureau of Indian standards). 1978a. Methods for testing tar and bituminous materials: Determination of determination of viscosity (absolute viscosity). IS: 1206-II. New Delhi, India: BIS.
BIS (Bureau of Indian standards). 1978b. Methods for testing tar and bituminous materials: Determination of ductility. IS: 1208. New Delhi, India: BIS.
BIS (Bureau of Indian standards). 1978c. Methods for testing tar and bituminous materials: Determination of penetration. IS: 1203. New Delhi, India: BIS.
BIS (Bureau of Indian standards). 1978d. Methods for testing tar and bituminous materials: Determination of softening point. IS: 1205. New Delhi, India: BIS.
BIS (Bureau of Indian standards). 1978e. Methods for testing tar and bituminous materials: Determination of viscosity (kinematic viscosity). IS: 1206-III. New Delhi, India: BIS.
Castillo, L., Jr. 2014. “State-of-the-art review of the applications of nanotechnology in pavement materials.” J. Civ. Eng. Res.Doctoral dissertation, Dept. of Civil and Architectural Engineering, Texas A&M Univ.-Kin.
D’Angelo, J., et al. 2008. Warm-mix asphalt: European practice. Washington, DC: Office of International Programs.
de Melo, J. V. S., and G. Trichês. 2016. “Effects of organophilic nanoclay on the rheological behavior and performance leading to permanent deformation of asphalt mixtures.” J. Mater. Civ. Eng. 28 (11): 04016142. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001650.
de Melo, J. V. S., G. Trichês, and L. T. de Rosso. 2018. “Experimental evaluation of the influence of reinforcement with multi-walled carbon nanotubes (MWCNTs) on the properties and fatigue life of hot mix asphalt.” Constr. Build. Mater. 162 (Feb): 369–382. https://doi.org/10.1016/j.conbuildmat.2017.12.033.
Diab, A., and Z. You. 2014. “Rheological characteristics of nano-sized hydrated lime-modified foamed warm mix asphalt.” In Pavement materials, structures, and performance, 79–89. Reston, VA: ASCE.
Diab, A., Z. P. You, and H. N. Wang. 2013. “Using modified creep and recovery tests to evaluate the foam-based warm mix asphalt contained nano hydrated lime.” In Vol. 646 of Advanced materials research, 90–96. Stafa-Zurich, Switzerland: Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/AMR.646.90.
Din, I. M. U., and M. S. Mir. 2021. “Experimental investigation of low viscosity grade binder modified with Fischer Tropsch-paraffin wax.” Int. J. Pavement Res. Technol. 14 (2): 129–137. https://doi.org/10.1007/s42947-020-0286-7.
Ezzat, H., S. El-Badawy, A. Gabr, E.-S. I. Zaki, and T. Breakah. 2016. “Evaluation of asphalt binders modified with nanoclay and nanosilica.” Procedia Eng. 143: 1260–1267. https://doi.org/10.1016/j.proeng.2016.06.119.
Galooyak, S. S., B. Dabir, A. E. Nazarbeygi, and A. Moeini. 2010. “Rheological properties and storage stability of bitumen/SBS/montmorillonite composites.” Constr. Build. Mater. 24 (3): 300–307. https://doi.org/10.1016/j.conbuildmat.2009.08.032.
Gama, D. A., J. M. Rosa, T. J. A. De Melo, and J. K. G. Rodrigues. 2016. “Rheological studies of asphalt modified with elastomeric polymer.” Constr. Build. Mater. 106 (Mar): 290–295. https://doi.org/10.1016/j.conbuildmat.2015.12.142.
Gamarra, A., and E. A. Ossa. 2018. “Thermo-oxidative aging of bitumen.” Int. J. Pavement Eng. 19 (7): 641–650. https://doi.org/10.1080/10298436.2016.1199876.
Gandhi, T., C. Akisetty, and S. Amirkhanian. 2009. “Laboratory evaluation of warm asphalt binder aging characteristics.” Int. J. Pavement Eng. 10 (5): 353–359. https://doi.org/10.1080/10298430802342724.
Gordon, D. A. 2002. “Rheological evaluation of ethylene vinyl acetate polymer modified bitumens.” Constr. Build. Mater. 16 (8): 473–487. https://doi.org/10.1016/S0950-0618(02)00103-4.
Hassan, A. F., A. M. Abdelghny, H. Elhadidy, and A. M. Youssef. 2014. “Synthesis and characterization of high surface area nanosilica from rice husk ash by surfactant-free sol-gel method.” J. Sol-Gel Sci. Technol. 69 (3): 465–472. https://doi.org/10.1007/s10971-013-3245-9.
Hurley, G. C., and B. D. Prowell. 2005. Evaluation of Sasobit for use in warm mix asphalt. Auburn, AL: National Center for Asphalt Technology.
Isacsson, U., and L. Xiaohu. 1997. “Rheological characterization of styrene-buta-diene-styrene copolymer modified bitumens.” Constr. Build. Mater. 11 (1): 23–32.
Iwański, M., M. Cholewińska, and G. Mazurek. 2017. “Viscoelastic properties of polymer modified bitumen in warm mix asphalt technology in terms of ageing.” Procedia Eng. 172: 401–408. https://doi.org/10.1016/j.proeng.2017.02.007.
Jafari, V., and A. Allahverdi. 2014. “Synthesis of nanosilica from silica fume using an acid-base precipitation technique and PVA as a nonionic surfactant.” J. Ultrafine Grained Nanostruct. Mater. 47 (2): 105–112. https://doi.org/10.7508/jufgnsm.2014.02.007.
Jahanbakhsh, H., M. M. Karimi, and N. Tabatabaee. 2017. “Experimental and numerical investigation of low-temperature performance of modified asphalt binders and mixtures.” Road Mater. Pavement Des. 18 (6): 1353–1374. https://doi.org/10.1080/14680629.2016.1220864.
Jamshidi, A., M. O. Hamzah, and Z. You. 2013. “Performance of warm mix asphalt containing Sasobit: State-of-the-art.” Constr. Build. Mater. 38 (Jan): 530–553. https://doi.org/10.1016/j.conbuildmat.2012.08.015.
Kataware, A. V., and D. Singh. 2017. “Evaluating effectiveness of WMA additives for SBS modified binder based on viscosity, Superpave PG, rutting and fatigue performance.” Constr. Build. Mater. 146 (Aug): 436–444. https://doi.org/10.1016/j.conbuildmat.2017.04.043.
Kataware, A. V., and D. Singh. 2019. “Dynamic mechanical analysis of crumb rubber modified asphalt binder containing warm mix additives.” Int. J. Pavement Eng. 20 (9): 1044–1054. https://doi.org/10.1080/10298436.2017.1380806.
Kim, H., S.-J. Lee, and S. N. Amirkhanian. 2010. “Effects of warm mix asphalt additives on performance properties of polymer modified asphalt binders.” Can. J. Civ. Eng. 37 (1): 17–24. https://doi.org/10.1139/L09-118.
Kim, H. H., M. Mazumder, M. S. Lee, and S. J. Lee. 2019. “Evaluation of high-performance asphalt binders modified with SBS, SIS, and GTR.” Advances in civil engineering, 2019. https://doi.org/10.1155/2019/2035954.
Kim, Y., J. Lee, C. Baek, S. Yang, S. Kwon, and Y. Suh. 2012. “Performance evaluation of warm- and hot-mix asphalt mixtures based on laboratory and accelerated pavement tests.” Advances in materials science and engineering, 2012, 1–9. https://doi.org/10.1155/2012/901658.
Laukkanen, O.-V., H. Soenen, T. Pellinen, S. Heyrman, and G. Lemoine. 2015. “Creep-recovery behavior of bituminous binders and its relation to asphalt mixture rutting.” Mater. Struct. 48 (12): 4039–4053. https://doi.org/10.1617/s11527-014-0464-7.
Leiva-Villacorta, F., and A. Vargas-Nordcbeck. 2019. “Optimum content of nano-silica to ensure proper performance of an asphalt binder.” Road Mater. Pavement Des. 20 (2): 414–425. https://doi.org/10.1080/14680629.2017.1385510.
Li, R., F. Xiao, S. Amirkhanian, Z. You, and J. Huang. 2017. “Developments of nano materials and technologies on asphalt materials—A review.” Constr. Build. Mater. 143 (Jul): 633–648. https://doi.org/10.1016/j.conbuildmat.2017.03.158.
Liu, K., K. Zhang, J. Wu, B. Muhunthan, and X. Shi. 2018. “Evaluation of mechanical performance and modification mechanism of asphalt modified with graphene oxide and warm mix additives.” J. Cleaner Prod. 193 (Aug): 87–96. https://doi.org/10.1016/j.jclepro.2018.05.040.
Lo Presti, D. 2013. “Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review.” Constr. Build. Mater. 49 (Dec): 863–881. https://doi.org/10.1016/j.conbuildmat.2013.09.007.
Mazumder, M., H. Kim, and S.-J. Lee. 2016. “Performance properties of polymer modified asphalt binders containing wax additives.” Int. J. Pavement Res. Technol. 9 (2): 128–139. https://doi.org/10.1016/j.ijprt.2016.03.004.
Merusi, F., and F. Giuliani. 2011. “Rheological characterization of wax-modified asphalt binders at high service temperatures.” Mater. Struct. 44 (10): 1809–1820. https://doi.org/10.1617/s11527-011-9739-4.
Mirzababaei, P., F. M. Nejad, and V. Vanaei. 2017. “Investigation of rutting performance of asphalt binders containing warm additive.” Pet. Sci. Technol. 35 (1): 79–85. https://doi.org/10.1080/10916466.2016.1247173.
Nejad, F. M., H. Nazari, K. Naderi, F. Karimiyan Khosroshahi, and M. Hatefi Oskuei. 2017. “Thermal and rheological properties of nanoparticle modified asphalt binder at low and intermediate temperature range.” Pet. Sci. Technol. 35 (7): 641–646. https://doi.org/10.1080/10916466.2016.1276589.
Oliveira, J. R. M., H. M. R. D. Silva, L. P. F. Abreu, and S. R. M. Fernandes. 2013. “Use of a warm mix asphalt additive to reduce the production temperatures and to improve the performance of asphalt rubber mixtures.” J. Cleaner Prod. 41 (Feb): 15–22. https://doi.org/10.1016/j.jclepro.2012.09.047.
Oliviero Rossi, C., A. Spadafora, B. Teltayev, G. Izmailova, Y. Amerbayev, and V. Bortolotti. 2015. “Polymer modified bitumen: Rheological properties and structural characterization.” Colloids Surf., A 480 (Sep): 390–397. https://doi.org/10.1016/j.colsurfa.2015.02.048.
Palit, S. K., K. S. Reddy, and B. B. Pandey. 2004. “Laboratory evaluation of crumb rubber modified asphalt mixes.” J. Mater. Civ. Eng. 16 (1): 45–53. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(45).
Patidar, A., D. Sarkar, and M. Pal. 2018. “Study the behavior of asphalt mix and their properties in presence of nano materials.” MATTER: Int. J. Sci. Technol. 4 (1): 73–87. https://doi.org/10.20319/mijst.2018.41.7387.
Phoohinkong, W., and U. Kitthawee. 2014. “Low-cost and fast production of nano-silica from rice husk ash.” Adv. Mater. Res. 979: 216–219. https://doi.org/10.4028/www.scientific.net/AMR.979.216.
Qing, Y., Z. Zenan, K. Deyu, and C. Rongshen. 2007. “Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume.” Constr. Build. Mater. 21 (3): 539–545. https://doi.org/10.1016/j.conbuildmat.2005.09.001.
Rahi, M., E. H. Fini, P. Hajikarimi, and F. M. Nejad. 2014. “Rutting characteristics of styrene-ethylene/propylene-styrene polymer modified asphalt.” J. Mater. Civ. Eng. 27 (4): 04014154. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001102.
Roja, K. L., A. Padmarekha, and J. M. Krishnan. 2018. “Rheological investigations on warm mix asphalt binders at high and intermediate temperature ranges.” J. Mater. Civ. Eng. 30 (4): 04018038. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002027.
Saboo, N., and P. Kumar. 2016. “Performance characterization of polymer modified asphalt binders and mixes.” Advances in civil engineering, 2016. https://doi.org/10.1155/2016/5938270.
Shu, B., S. Wu, L. Pang, and B. Javilla. 2017. “The utilization of multiple-walled carbon nanotubes in polymer modified bitumen.” Materials (Basel) 10 (4): 416. https://doi.org/10.3390/ma10040416.
Steyn, W. J. 2009. “Potential applications of nanotechnology.” J. Transp. Eng. 135 (Oct): 764–772. https://doi.org/10.1061/(ASCE)0733-947X(2009)135:10(764).
Steyn, W. J. 2011. “Applications of nanotechnology in road pavement engineering.” In Nanotechnology in civil infrastructure, 49–83. Berlin: Springer.
Su, K., R. Maekawa, and Y. Hachiya. 2009. “Laboratory evaluation of WMA mixture for use in airport pavement rehabilitation.” Constr. Build. Mater. 23 (7): 2709–2714. https://doi.org/10.1016/j.conbuildmat.2008.12.011.
Tauste, R., F. Moreno-Navarro, M. Sol-Sánchez, and M. C. Rubio-Gámez. 2018. “Understanding the bitumen ageing phenomenon: A review.” Constr. Build. Mater. 192 (Dec): 593–609. https://doi.org/10.1016/j.conbuildmat.2018.10.169.
Vargas, M. A., L. Moreno, R. Montiel, O. Manero, and H. Vázquez. 2017. “Effects of montmorillonite (Mt) and two different organo-Mt additives on the performance of asphalt.” Appl. Clay Sci. 139 (Apr): 20–27. https://doi.org/10.1016/j.clay.2017.01.009.
Wang, T., F. Xiao, S. Amirkhanian, W. Huang, and M. Zheng. 2017. “A review on low temperature performances of rubberized asphalt materials.” Constr. Build. Mater. 145 (Aug): 483–505. https://doi.org/10.1016/j.conbuildmat.2017.04.031.
Wasiuddin, N. M., R. Saha, W. King Jr., and L. Mohammad. 1997. “Effects of temperature and shear rate on viscosity of Sasobit-modified asphalt binders.” Int. J. Pavement Res. Technol. 5 (6): 369–378. https://doi.org/10.1016/j.conbuildmat.2017.04.031.
Wu, S., J. Wang, and L. Jiesheng. 2010. “Preparation and fatigue property of nanoclay modified asphalt binder.” In Proc., 2010 Int. Conf. on Mechanic Automation and Control Engineering, MACE2010, 1595–1598. New York: IEEE. https://doi.org/10.1109/MACE.2010.5535976.
Xiao, F., V. S. Punith, and S. N. Amirkhanian. 2012. “Effects of non-foaming WMA additives on asphalt binders at high performance temperatures.” Fuel 94 (Apr): 144–155. https://doi.org/10.1016/j.fuel.2011.09.017.
Yang, J., and S. Tighe. 2013. “A review of advances of nanotechnology in asphalt mixtures.” Procedia Soc. Behav. Sci. 96 (Nov): 1269–1276. https://doi.org/10.1016/j.sbspro.2013.08.144.
Yao, H., Z. You, L. Li, C. H. Lee, D. Wingard, Y. K. Yap, X. Shi, and S. W. Goh. 2013. “Rheological properties and chemical bonding of asphalt modified with nanosilica.” J. Mater. Civ. Eng. 25 (11): 1619–1630. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000690.
Yen, T. F., J. Gordon Erdman, and S. S. Pollack. 1961. “Investigation of the structure of petroleum asphaltenes by X-ray diffraction.” Preprints 33 (11): 1587–1594. https://doi.org/10.1021/ac60179a039.
Yildirim, Y. 2007. “Polymer modified asphalt binders.” Constr. Build. Mater. 21 (1): 66–72. https://doi.org/10.1016/j.conbuildmat.2005.07.007.
You, Z. 2013. “Nanomaterials in asphalt pavements.” Int. J. Pavement Res. Technol. 6 (3): 1–4. https://doi.org/10.6135/ijprt.org.tw/2013.6(3).iv.
You, Z., J. Mills-Beale, J. M. Foley, S. Roy, G. M. Odegard, Q. Dai, and S. W. Goh. 2011. “Nanoclay-modified asphalt materials: Preparation and characterization.” Constr. Build. Mater. 25 (2): 1072–1078. https://doi.org/10.1016/j.conbuildmat.2010.06.070.
Yuvakkumar, R., V. Elango, V. Rajendran, and N. Kannan. 2014. “High-purity nano silica powder from rice husk using a simple chemical method.” J. Exp. Nanosci. 9 (3): 272–281. https://doi.org/10.1080/17458080.2012.656709.
Zhang, H., Z. Chen, G. Xu, and C. Shi. 2018. “Evaluation of aging behaviors of asphalt binders through different rheological indices.” Fuel 221 (Nov): 78–88. https://doi.org/10.1016/j.fuel.2018.02.087.
Zhou, J., X. Chen, G. Xu, and Q. Fu. 2019. “Evaluation of low temperature performance for SBS/CR compound modified asphalt binders based on fractional viscoelastic model.” Constr. Build. Mater. 214 (Jul): 326–336. https://doi.org/10.1016/j.conbuildmat.2019.04.064.
Zhu, J., B. Birgisson, and N. Kringos. 2014. “Polymer modification of bitumen: Advances and challenges.” Eur. Polym. J. 54 (1): 18–38. https://doi.org/10.1016/j.eurpolymj.2014.02.005.
Zhu, J., K. Zhang, K. Liu, and X. Shi. 2019. “Performance of hot and warm mix asphalt mixtures enhanced by nano-sized graphene oxide.” Constr. Build. Mater. 217 (Aug): 273–282. https://doi.org/10.1016/j.conbuildmat.2019.05.054.
Ziari, H., and R. Babagoli. 2015. “Evaluation of fatigue and rutting behavior of asphalt binder containing warm additive.” Pet. Sci. Technol. 33 (17–18): 1627–1632. https://doi.org/10.1080/10916466.2015.1084320.
Ziari, H., P. Mirzababaei, and R. Babagoli. 2016. “Properties of bituminous mixtures modified with a nano-organosilane additive.” Pet. Sci. Technol. 34 (4): 386–393. https://doi.org/10.1080/10916466.2015.1136948.
Ziari, H., M. Naghavi, and R. Imaninasab. 2018. “Performance evaluation of rubberised asphalt mixes containing WMA additives.” Int. J. Pavement Eng. 19 (7): 623–629. https://doi.org/10.1080/10298436.2016.1199874.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 11November 2021

History

Received: Oct 26, 2020
Accepted: Mar 19, 2021
Published online: Sep 6, 2021
Published in print: Nov 1, 2021
Discussion open until: Feb 6, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Research Scholar, Dept. of Civil Engineering, National Institute of Technology Srinagar, Srinagar, Jammu and Kashmir 190006, India (corresponding author). ORCID: https://orcid.org/0000-0002-8886-7914. Email: [email protected]
Mohammad Shafi Mir [email protected]
Professor, Dept. of Civil Engineering, National Institute of Technology Srinagar, Srinagar, Jammu and Kashmir 190006, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share