Abstract

This paper investigated the red ceramic waste originated from damaged sintered bricks as a potential source of pozzolanic mineral addition for portland cement. Physical, chemical, and mineralogical characterization of the red ceramic waste and clay raw material was conducted. The pozzolanic activity was identified through electrical conductivity, modified Chapelle, and Frattini tests, and verified by the evolution of axial compressive strength and apparent porosity in cementitious mortars produced with 30% of waste replacing portland cement. Results showed a low content of kaolinite (22%) in the clay used to produce the bricks and the complete decomposition of kaolinite after sintering. The red ceramic waste can be classified as a mineral addition with variable pozzolanicity by its ability to absorb calcium ions and pozzolanic material with medium reactivity, based on the ability to fix lime. The partial replacement of cement with 30% waste assigns a pozzolanic character to portland cement. The assessment of compressive strength and porosity in mortars over time supported the potential of using comminuted red ceramic waste as pozzolanic mineral addition in portland cement.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

ABNT (Associação Brasileira de Normas Técnicas). 2012. Portland cement with pozzolanic materials—Chemical analysis—Reference test method. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2015. Pozzolanic materials—Requirements. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2016. Portland cement—Pozzolanicity test for Pozzolanic cements. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2018. Portland cement—Requirements. NBR 16697. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2010. Pozzolanic materials—Determination of calcium hydroxide fixed—Modified Chapelle’s method. Rio de Janeiro, Brazil: ABNT.
AFNOR (Association Française de Normalisation). 2012. Pozzolanic addition for concrete—Metakaolin—Specifications and conformity criteria. Saint-Denis, France: AFNOR.
Araújo, R. A., A. L. R. de Menezes, K. C. Cabral, A. K. C. Nóbrega, A. E. Martinelli, and K. G. M. Dantas. 2019. “Evaluation of the pozzolanic activity of red ceramic waste using mechanical and physicochemical methods.” Cerâmica 65 (375): 461–469. https://doi.org/10.1590/0366-69132019653752649.
ASTM. 2017. Standard test method for screening apparent specific gravity and bulk density of waste. ASTM D5057-17. West Conshohocken, PA: ASTM.
ASTM. 2018a. Standard test methods for chemical analysis of hydraulic cement. ASTM C114. West Conshohocken, PA: ASTM.
ASTM. 2018b. Standard test methods for sampling and testing fly ash or natural pozzolans for use in Portland-cement concrete. ASTM C311/C311M. West Conshohocken, PA: ASTM.
ASTM. 2019. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM C618. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard specification for Portland cement. ASTM C150/150M-20. West Conshohocken, PA: ASTM.
Avet, F., R. Snellings, A. A. Diaz, M. Ben Haha, and K. Scrivener. 2016. “Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays.” Cem. Concr. Res. 85 (Jul): 1–11. https://doi.org/10.1016/j.cemconres.2016.02.015.
Ay, N., and M. Ünal. 2000. “The use of waste ceramic tile in cement production.” Cem. Concr. Res. 30 (3): 497–499. https://doi.org/10.1016/S0008-8846(00)00202-7.
Baronio, G., and L. Binda. 1997. “Study of the pozzolanicity of some bricks and clays.” Constr. Build. Mater. 11 (1): 41–46. https://doi.org/10.1016/S0950-0618(96)00032-3.
Bich, C., J. Ambroise, and J. Péra. 2009. “Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin.” Appl. Clay Sci. 44 (3–4): 194–200. https://doi.org/10.1016/j.clay.2009.01.014.
Bratoev, B., I. Doykov, J. Ninov, and A. Lenchev. 2018. “Pozzolanic activity assessment of calcined clays with complex minerals content.” Adv. Cem. Res. 30 (3): 103–112. https://doi.org/10.1680/jadcr.17.00057.
CEN (European Committee for Standardization). 2011. Methods of testing cement—Part 5: Pozzolanicity test for pozzolanic cement. EN 196-5. Brussels, Belgium: CEN.
Donatello, S., M. Tyrer, and C. R. Cheeseman. 2010. “Comparison of test methods to assess pozzolanic activity.” Cem. Concr. Compos. 32 (2): 121–127. https://doi.org/10.1016/j.cemconcomp.2009.10.008.
Fernandez, R., F. Martirena, and K. L. Scrivener. 2011. “The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite.” Cem. Concr. Res. 41 (1): 113–122. https://doi.org/10.1016/j.cemconres.2010.09.013.
Garcia, E., M. Cabral Junior, V. A. Quarcioni, and F. F. Chotoli. 2014. “Resíduo de cerâmica vermelha (RCW): uma alternativa como material pozolânico.” Cerâmica Ind. 19 (4): 31–38. https://doi.org/10.4322/cerind.2014.083.
Garcia, E., M. Cabral Junior, V. A. Quarcioni, and F. F. Chotoli. 2015. “Avaliação da atividade pozolânica dos resíduos de cerâmica vermelha produzidos nos principais polos ceramistas do Estado de São Paulo.” Cerâmica 61 (358): 251–258. https://doi.org/10.1590/0366-69132015613581847.
Gastaldini, A. L. G., M. F. Hengen, M. C. C. Gastaldini, F. D. do Amaral, M. B. Antolini, and T. Coletto. 2015. “The use of water treatment plant sludge ash as a mineral addition.” Constr. Build. Mater. 94 (Sep): 513–520. https://doi.org/10.1016/j.conbuildmat.2015.07.038.
Godoy, L. G. G. D., A. B. Rohden, M. R. Garcez, E. B. Costa, S. Da Dalt, and J. J. O. D. Andrade. 2019. “Valorization of water treatment sludge waste by application as a supplementary cementitious material.” Constr. Build. Mater. 223 (Oct): 939–950. https://doi.org/10.1016/j.conbuildmat.2019.07.333.
Godoy, L. G. G. D., A. B. Rohden, M. R. Garcez, S. Da Dalt, and L. Bonan Gomes. 2020. “Production of supplementary cementitious material as a sustainable management strategy for water treatment sludge waste.” Case Stud. Constr. Mater. 12 (Jun): e00329. https://doi.org/10.1016/j.cscm.2020.e00329.
He, C., B. Osbaeck, and E. Makovicky. 1995. “Pozzolanic reactions of six principal clay minerals: Activation, reactivity assessments and technological effects.” Cem. Concr. Res. 25 (8): 1691–1702. https://doi.org/10.1016/0008-8846(95)00165-4.
Kizinievic, O., R. Zurauskiene, V. Kizinievic, and R. Zurauskas. 2013. “Utilization of sludge waste from water treatment for ceramic products.” Constr. Build. Mater. 41 (Apr): 464–473. https://doi.org/10.1016/j.conbuildmat.2012.12.041.
Lasseuguette, E., S. Burns, D. Simmons, E. Francis, H. K. Chai, V. Koutsos, and Y. Huang. 2019. “Chemical, microstructural and mechanical properties of ceramic waste blended cementitious systems.” J. Cleaner Prod. 211 (20): 1228–1238. https://doi.org/10.1016/j.jclepro.2018.11.240.
Lavat, A. E., M. A. Trezza, and M. Poggi. 2009. “Characterization of ceramic roof tile wastes as pozzolanic admixture.” Waste Manage. 29 (5): 1666–1674. https://doi.org/10.1016/j.wasman.2008.10.019.
Ling, Y. P., R.-H. Tham, S.-M. Lim, M. Fahim, C.-H. Ooi, P. Krishnan, A. Matsumoto, and F.-Y. Yeoh. 2017. “Evaluation and reutilization of water sludge from fresh water processing plant as a green clay substituent.” Appl. Clay Sci. 143 (Jul): 300–306. https://doi.org/10.1016/j.clay.2017.04.007.
Luxán, M. P., F. Madruga, and J. Saavedra. 1989. “Rapid evaluation of pozzolanic activity of natural products by conductivity measurement.” Cem. Concr. Res. 19 (1): 63–68. https://doi.org/10.1016/0008-8846(89)90066-5.
Matias, G., P. Farias, and I. Torres. 2014. “Lime mortars with heat treated clays and ceramic waste: A review.” Constr. Build. Mater. 73 (Dec): 125–136. https://doi.org/10.1016/j.conbuildmat.2014.09.028.
Medeiros, M. H. F., D. J. Souza, J. Hoppe Filho, C. S. Adorno, V. A. Quarcioni, and E. Pereira. 2016. “Resíduo de cerâmica vermelha e fíler calcário em compósito de cimento Portland: efeito no ataque por sulfatos e na reação álcali-sílica.” Revista Matéria 21 (2): 282–300. https://doi.org/10.1590/S1517-707620160002.0028.
Mohammed, S. 2017. “Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review.” Constr. Build. Mater. 140 (Jun): 10–19. https://doi.org/10.1016/j.conbuildmat.2017.02.078.
Msinjili, N. S., G. J. G. Gluth, P. Sturm, N. Vogler, and H.-C. Kühne. 2019. “Comparison of calcined illitic clays (brick clays) and low-grade kaolinitic clays as supplementary cementitious materials.” Mater. Struct. 52 (5): 94. https://doi.org/10.1617/s11527-019-1393-2.
Paris, J. M., J. G. Roessler, C. C. Ferraro, H. D. Deford, and T. G. Townsend. 2016. “A review of waste products utilized as supplements to Portland cement in concrete.” J. Cleaner Prod. 121 (May): 1–18. https://doi.org/10.1016/j.jclepro.2016.02.013.
Pereira-de-Oliveira, L. A., J. P. Castro-Gomes, and P. M. S. Santos. 2012. “The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components.” Constr. Build. Mater. 31 (Jun): 197–203. https://doi.org/10.1016/j.conbuildmat.2011.12.110.
Quarcioni, V. A., F. F. Chotoli, A. C. V. Coelho, and M. A. Cincotto. 2015. “Indirect and direct Chapelle’s methods for the determination of lime consumption in pozzolanic materials.” Revista Ibracon de Estruturas e Materiais 8 (1): 1–7. https://doi.org/10.1590/S1983-41952015000100002.
Raverdy, M., F. Brivot, A. M. Paillere, and R. Dron. 1980. “Appreciation of pozzolanic reactivity of minor components.” In Vol. 3 of Proc., 7th Int. Congress on the Chemistry of Cement (ICCC), Champs-sur-Marne, France: Institut Francais des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux.
Sabir, B. B., S. Wild, and J. Bai. 2001. “Metakaolin and calcined clays as pozzolans for concrete: a review.” Cem. Concr. Compos. 23 (6): 441–454. https://doi.org/10.1016/S0958-9465(00)00092-5.
Samadi, M., G. F. Huseuen, H. Mohammadhosseini, H. S. Lee, N. H. A. S. Lim, M. M. Tahir, and R. Alyousef. 2020. “Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars.” J. Cleaner Prod. 266 (Sep): 121825. https://doi.org/10.1016/j.jclepro.2020.121825.
Scrivener, K. L., V. M. John, and E. M. Gartner. 2018. “Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based industry.” Cem. Concr. Res. 114 (Dec): 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015.
Tironi, A., C. C. Castellano, V. Bonavetti, M. A. Trezza, A. N. Scian, and E. F. Irassar. 2015. “Blended cements elaborated with kaolinitic calcined clays.” Procedia Mater. Sci. 8 (2015): 211–217. https://doi.org/10.1016/j.mspro.2015.04.066.
Tironi, A., M. A. Trezza, A. N. Scian, and E. F. Irassar. 2012a. “Incorporation of calcined clays in mortars: Porous structure and compressive strength.” Procedia Mater. Sci. 1 (2012): 366–373. https://doi.org/10.1016/j.mspro.2012.06.049.
Tironi, A., M. A. Trezza, A. N. Scian, and E. F. Irassar. 2012b. “Kaolinitic calcined clays: Factors affecting its performance as pozzolans.” Constr. Build. Mater. 28 (1): 276–281. https://doi.org/10.1016/j.conbuildmat.2011.08.064.
Tironi, A., M. A. Trezza, A. N. Scian, and E. F. Irassar. 2013. “Assessment of pozzolanic activity of different calcined clays.” Cem. Concr. Compos. 37 (Mar): 319–327. https://doi.org/10.1016/j.cemconcomp.2013.01.002.
Zhou, D., R. Wang, M. Tyrer, H. Wong, and C. Cheeseman. 2017. “Sustainable infrastructure development through use of calcined excavated waste clay as supplementary cementitious material.” J. Cleaner Prod. 168 (Dec): 1180–1192. https://doi.org/10.1016/j.jclepro.2017.09.098.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 6June 2021

History

Received: May 13, 2020
Accepted: Oct 21, 2020
Published online: Mar 25, 2021
Published in print: Jun 1, 2021
Discussion open until: Aug 25, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, Exact Sciences and Technologies Center, Federal Univ. of Western Bahia (UFOB), Rua Professor José Seabra de Lemos, 316–Recanto dos Pássaros, Barreiras–BA, CEP 47808-021, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-9645-6808. Email: [email protected]
Assistant Professor, Exact Sciences and Technologies Center, Federal Univ. of Western Bahia (UFOB), Barreiras–BA, CEP 47808-021, Brazil. ORCID: https://orcid.org/0000-0002-1214-0890. Email: [email protected]
O. D. Leite [email protected]
Associate Professor, Dept. of Chemistry, Federal Technological Univ. of Paraná (UTFPR), Medianeira–PR, CEP 85844-000, Brazil. Email: [email protected]
Associate Professor, Interdisciplinary Dept., Federal Univ. of Rio Grande do Sul (UFRGS), Tramandaí–RS, CEP 95590-000, Brazil. ORCID: https://orcid.org/0000-0003-1641-5705. Email: [email protected]
M. H. F. Medeiros [email protected]
Adjunt Professor, Civil Engineering Studies Center (CESEC), Postgraduate Program in Civil Construction Engineering (PPGECC), Dept. of Civil Construction, Federal Univ. of Paraná (UFPR), Centro Politécnico, Curitiba–PR, CEP 81530-000, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share