Technical Papers
Oct 27, 2020

Effect of Xanthan Gum Biopolymer on Fracture Properties of Clay

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 1

Abstract

Additives enhancing the fracture resistance of clay are of great importance to decrease cracking potential of earth structures. With the promotion of environmental protection, eco-friendly biopolymers have shown their competitiveness as additives in different engineering fields. This research deals with the findings of an experimental investigation carried out on single-edge notched beams manufactured from compacted clay. Three-point bending (flexure beam) tests were performed to evaluate the effect of xanthan gum biopolymer, a common fluid thickener biopolymer in the food industry, on fracture behavior of clay during drying. Particle size analysis (PSA) and scanning electron microscopy (SEM) were carried out to study the microinteractions of clay–xanthan gum mixtures. The results showed that although xanthan gum biopolymer has limited effects on nominal flexural strength and fracture toughness at high water contents, it increases clay fracture energy and final displacement at zero external load in all water contents. With the evaporation of water, the strength and fracture toughness of biopolymer-treated clay increases more significantly in comparison with the pure clay. In addition, although the fracture energy of clay reduces during drying, for biopolymer-treated clay the fracture energy not only does not decrease significantly but also increases at the dry state.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Achanta, S., and M. R. Okos. 1996. “Predicting the quality of dehydrated foods and biopolymers—Research needs and opportunities.” Drying Technol. 14 (6): 1329–1368. https://doi.org/10.1080/07373939608917149.
Albrecht, B. A. 1996. Effect of desiccation on compacted clays. Madison, WI: Univ. of Wisconsin–Madison.
Albrecht, B. A., and C. H. Benson. 2001. “Effect of desiccation on compacted natural clays.” J. Geotech. Geoenviron. Eng. 127 (1): 67–75. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(67).
Albrecht, B. A., and C. H. Benson. 2002. “Closure to ‘Effect of desiccation on compacted natural clays’ by Brian A. Albrecht and Craig H. Benson.” J. Geotech. Geoenviron. Eng. 128 (4): 357–360. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:4(357).
Amarasiri, A., and J. Kodikara. 2010. “Use of material interfaces in DEM to simulate soil fracture propagation in Mode I cracking.” Int. J. Geomech. 11 (4): 314–322. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000090.
Amarasiri, A. L., S. Costa, and J. K. Kodikara. 2011. “Determination of cohesive properties for mode I fracture from compacted clay beams.” Can. Geotech. J. 48 (8): 1163–1173. https://doi.org/10.1139/t11-031.
Aminpour, M., and B. C. O’Kelly. 2015. “Applications of biopolymers in dam construction and operation activities.” Proc., 2nd Int. Dam World Conf., 937–946. Lisbon, Portugal: Laboratório Nacional de Engenharia Civil.
AS (Standards Australia). 2003. Determination of the dry density/moisture content relation of a soil using standard compactive effort. AS 1289.5. Sydney, Australia: Standards Australia.
ASTM. 1996. Standard test method for plane-strain fracture toughness of metallic materials. ASTM E399-90. West Conshohocken, PA: ASTM.
ASTM. 2005. Standard test method for plane strain fracture toughness of metallic materials. ASTM E399-90. West Conshohocken, PA: ASTM.
Ayad, R., J.-M. Konrad, and M. Soulié. 1997. “Desiccation of a sensitive clay: Application of the model CRACK.” Can. Geotech. J. 34 (6): 943–951. https://doi.org/10.1139/t97-065.
Ayeldeen, M., A. Negm, M. El-Sawwaf, and M. Kitazume. 2017. “Enhancing mechanical behaviors of collapsible soil using two biopolymers.” J. Rock Mech. Geotech. Eng. 9 (2): 329–339. https://doi.org/10.1016/j.jrmge.2016.11.007.
Ayeldeen, M. K., A. M. Negm, and M. A. El Sawwaf. 2016. “Evaluating the physical characteristics of biopolymer/soil mixtures.” Arabian J. Geosci. 9 (5): 371. https://doi.org/10.1007/s12517-016-2366-1.
Barani, O. R., M. Mosallanejad, and S. A. Sadrnejad. 2015. “Fracture analysis of cohesive soils using bilinear and trilinear cohesive laws.” Int. J. Geomech. 16 (4): 04015088. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000630.
Bazant, Z. P., and J. Planas. 1997. Fracture and size effect in concrete and other quasibrittle materials. Boca Raton, FL: CRC Press.
Bažant, Z. P., and M. T. Kazemi. 1991. “Size dependence of concrete fracture energy determined by RILEM work-of-fracture method.” Int. J. Fract. 51 (2): 121–138. https://doi.org/10.1007/BF00033974.
Benson, C. H., P. A. Thorstad, H.-Y. Jo, and S. A. Rock. 2007. “Hydraulic performance of geosynthetic clay liners in a landfill final cover.” J. Geotech. Geoenviron. Eng. 133 (7): 814–827. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(814).
Berney, I., S. Ernest, W. D. Hodo, J. F. Peters, T. E. Myers, R. S. Olsen, and M. K. Sharp. 2008. Assessment of the effectiveness of clay soil covers as engineered barriers in waste disposal facilities with emphasis on modeling cracking behavior. Washington, DC: Nuclear Regulatory Commission.
Bouazza, A., W. P. Gates, and P. G. Ranjith. 2009. “Hydraulic conductivity of biopolymer-treated silty sand.” Géotechnique 59 (1): 71–72. https://doi.org/10.1680/geot.2007.00137.
Brunchi, C.-E., M. Bercea, S. Morariu, and M. Avadanei. 2016. “Investigations on the interactions between xanthan gum and poly (vinyl alcohol) in solid state and aqueous solutions.” Eur. Polym. J. 84 (Nov): 161–172. https://doi.org/10.1016/j.eurpolymj.2016.09.006.
BSI (British Standards Institution). 1990. British standard methods of test for soils for civil engineering purposes. Part 2: Classification tests. BS1377. London: BSI.
Cabalar, A. F., M. H. Awraheem, and M. M. Khalaf. 2018. “Geotechnical properties of a low-plasticity clay with biopolymer.” J. Mater. Civ. Eng. 30 (8): 04018170. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002380.
Cabalar, A. F., and H. Canakci. 2011. “Direct shear tests on sand treated with xanthan gum.” Proc. Inst. Civ. Eng. Ground Improv. 164 (2): 57–64. https://doi.org/10.1680/grim.800041.
Carpinteri, A., and B. Chiaia. 1996. “Size effects on concrete fracture energy: Dimensional transition from order to disorder.” Mater. Struct. 29 (5): 259. https://doi.org/10.1007/BF02486360.
Chang, I., J. Im, and G.-C. Cho. 2016. “Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering.” Sustainability 8 (3): 251. https://doi.org/10.3390/su8030251.
Chang, I., J. Im, A. K. Prasidhi, and G.-C. Cho. 2015a. “Effects of Xanthan gum biopolymer on soil strengthening.” Constr. Build. Mater. 74 (Jan): 65–72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
Chang, I., A. K. Prasidhi, J. Im, H.-D. Shin, and G.-C. Cho. 2015b. “Soil treatment using microbial biopolymers for anti-desertification purposes.” Geoderma 253 (Sep): 39–47. https://doi.org/10.1016/j.geoderma.2015.04.006.
Chang, S.-H., C.-I. Lee, and S. Jeon. 2002. “Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens.” Eng. Geol. 66 (1–2): 79–97. https://doi.org/10.1016/S0013-7952(02)00033-9.
Chen, C., L. Wu, M. Perdjon, X. Huang, and Y. Peng. 2019. “The drying effect on xanthan gum biopolymer treated sandy soil shear strength.” Constr. Build. Mater. 197 (Feb): 271–279. https://doi.org/10.1016/j.conbuildmat.2018.11.120.
Cheng, W.-C., G. Li, N. Liu, J. Xu, and S. Horpibulsuk. 2020. “Recent massive incidents for subway construction in soft alluvial deposits of Taiwan: A review.” Tunnelling Underground Space Technol. 96 (Feb): 103178. https://doi.org/10.1016/j.tust.2019.103178.
Cheng, W.-C., Z.-F. Xue, L. Wang, and J. Xu. 2019. “Using post-harvest waste to improve shearing behaviour of loess and its validation by multiscale direct shear tests.” Appl. Sci. 9 (23): 5206. https://doi.org/10.3390/app9235206.
Comba, S., and R. Sethi. 2009. “Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum.” Water Res. 43 (15): 3717–3726. https://doi.org/10.1016/j.watres.2009.05.046.
Cui, S. W. 2005. Food carbohydrates: Chemistry, physical properties, and applications. Boca Raton, FL: CRC Press.
Elices, M., G. Guinea, and J. Planas. 1992. “Measurement of the fracture energy using three-point bend tests: Part 3—Influence of cutting the P-δ tail.” Mater. Struct. 25 (6): 327–334. https://doi.org/10.1007/BF02472591.
García, M. C., M. C. Alfaro, N. Calero, and J. Muñoz. 2011. “Influence of gellan gum concentration on the dynamic viscoelasticity and transient flow of fluid gels.” Biochem. Eng. J. 55 (2): 73–81. https://doi.org/10.1016/j.bej.2011.02.017.
Garcıa-Ochoa, F., V. Santos, J. Casas, and E. Gomez. 2000. “Xanthan gum: Production, recovery, and properties.” Biotechnol. Adv. 18 (7): 549–579. https://doi.org/10.1016/S0734-9750(00)00050-1.
Giroud, J., and R. Bonaparte. 1989. “Leakage through liners constructed with geomembranes—Part I. Geomembrane liners.” Geotext. Geomembr. 8 (1): 27–67. https://doi.org/10.1016/0266-1144(89)90009-5.
Gourc, J. P., S. Camp, B. V. S. Viswanadham, and S. Rajesh. 2010. “Deformation behavior of clay cap barriers of hazardous waste containment systems: Full-scale and centrifuge tests.” Geotext. Geomembr. 28 (3): 281–291. https://doi.org/10.1016/j.geotexmem.2009.09.014.
Guinea, G., J. Planas, and M. Elices. 1992. “Measurement of the fracture energy using three-point bend tests: Part 1—Influence of experimental procedures.” Mater. Struct. 25 (4): 212–218. https://doi.org/10.1007/BF02473065.
Hallett, P. D., and T. A. Newson. 2005. “Describing soil crack formation using elastic-plastic fracture mechanics.” Eur. J. Soil Sci. 56 (1): 31–38. https://doi.org/10.1111/j.1365-2389.2004.00652.x.
Ham, S.-M., I. Chang, D.-H. Noh, T.-H. Kwon, and B. Muhunthan. 2018. “Improvement of surface erosion resistance of sand by microbial biopolymer formation.” J. Geotech. Geoenviron. Eng. 144 (7): 06018004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001900.
Hatakeyama, H., and T. Hatakeyama. 1998. “Interaction between water and hydrophilic polymers.” Thermochim. Acta 308 (1–2): 3–22. https://doi.org/10.1016/S0040-6031(97)00325-0.
Hu, X., and F. Wittmann. 2000. “Size effect on toughness induced by crack close to free surface.” Eng. Fract. Mech. 65 (2–3): 209–221. https://doi.org/10.1016/S0013-7944(99)00123-X.
Ivanov, V., and J. Chu. 2008. “Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ.” Rev. Environ. Sci. Bio Technol. 7 (2): 139–153. https://doi.org/10.1007/s11157-007-9126-3.
Khire, M. V., C. H. Benson, and P. J. Bosscher. 1997. “Water balance modeling of earthen final covers.” J. Geotech. Geoenviron. Eng. 123 (8): 744–754. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:8(744).
Konrad, J.-M., and R. Ayad. 1997. “Desiccation of a sensitive clay: Field experimental observations.” Can. Geotech. J. 34 (6): 929–942. https://doi.org/10.1139/t97-063.
Kumar, A., K. M. Rao, and S. S. Han. 2018. “Application of xanthan gum as polysaccharide in tissue engineering: A review.” Carbohydr. Polym. 180 (Jan): 128–144. https://doi.org/10.1016/j.carbpol.2017.10.009.
Lake, C. B., and R. K. Rowe. 2005. “The 14-year performance of a compacted clay liner used as part of a composite liner system for a leachate lagoon.” Geotech. Geol. Eng. 23 (6): 657–678. https://doi.org/10.1007/s10706-004-8815-8.
Laneuville, S. I., S. L. Turgeon, C. Sanchez, and P. Paquin. 2006. “Gelation of native beta-lactoglobulin induced by electrostatic attractive interaction with Xanthan gum.” Langmuir 22 (17): 7351–7357. https://doi.org/10.1021/la060149+.
Latifi, N., S. Horpibulsuk, C. L. Meehan, M. Z. Abd Majid, and A. S. A. Rashid. 2016a. “Xanthan gum biopolymer: An eco-friendly additive for stabilization of tropical organic peat.” Environ. Earth Sci. 75 (2): 825. https://doi.org/10.1007/s12665-016-5643-0.
Latifi, N., S. Horpibulsuk, C. L. Meehan, M. Z. Abd Majid, M. M. Tahir, and E. T. Mohamad. 2016b. “Improvement of problematic soils with biopolymer—An environmentally friendly soil stabilizer.” J. Mater. Civ. Eng. 29 (2): 04016204. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001706.
Lee, S., M. Chung, H. M. Park, K.-I. Song, and I. Chang. 2019. “Xanthan gum biopolymer as soil-stabilization binder for road construction using local soil in Sri Lanka.” J. Mater. Civ. Eng. 31 (11): 06019012. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002909.
Li, H. D., C. S. Tang, Q. Cheng, S. J. Li, X. P. Gong, and B. Shi. 2019. “Tensile strength of clayey soil and the strain analysis based on image processing techniques.” Eng. Geol. 253 (Apr): 137–148. https://doi.org/10.1016/j.enggeo.2019.03.017.
McClements, D. J. 2014. Nanoparticle-and microparticle-based delivery systems: Encapsulation, protection and release of active compounds. Boca Raton, FL: CRC Press.
Mitchell, J. K., and J. C. Santamarina. 2005. “Biological considerations in geotechnical engineering.” J. Geotech. Geoenviron. Eng. 131 (10): 1222–1233. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222).
Muguda, S., S. J. Booth, P. N. Hughes, C. E. Augarde, C. Perlot, A. W. Bruno, and D. Gallipoli. 2017. “Mechanical properties of biopolymer-stabilised soil-based construction materials.” Geotech. Lett. 7 (4): 309–314. https://doi.org/10.1680/jgele.17.00081.
Murthy, A. R., B. Karihaloo, N. R. Iyer, and B. R. Prasad. 2013. “Determination of size-independent specific fracture energy of concrete mixes by two methods.” Cem. Concr. Res. 50 (Aug): 19–25. https://doi.org/10.1016/j.cemconres.2013.03.015.
Nugent, R. A., G. Zhang, and R. P. Gambrell. 2009. “Effect of exopolymers on the liquid limit of clays and its engineering implications.” Transp. Res. Rec. 2101 (1): 34–43. https://doi.org/10.3141/2101-05.
Orts, W. J., R. E. Sojka, and G. M. Glenn. 2000. “Biopolymer additives to reduce erosion-induced soil losses during irrigation.” Ind. Crops Prod. 11 (1): 19–29. https://doi.org/10.1016/S0926-6690(99)00030-8.
Planas, J., M. Elices, and G. Guinea. 1992. “Measurement of the fracture energy using three-point bend tests: Part 2—Influence of bulk energy dissipation.” Mater. Struct. 25 (5): 305–312. https://doi.org/10.1007/BF02472671.
Plank, J. 2004. “Applications of biopolymers and other biotechnological products in building materials.” Appl. Microbiol. Biotechnol. 66 (1): 1–9. https://doi.org/10.1007/s00253-004-1714-3.
Qiang, X., L. Hai-Jun, L. Zhen-Ze, and L. Lei. 2014. “Cracking, water permeability and deformation of compacted clay liners improved by straw fiber.” Eng. Geol. 178 (Aug): 82–90. https://doi.org/10.1016/j.enggeo.2014.05.013.
Qureshi, M., N. Bessaih, K. Al-Sadrani, S. Al-Falahi, and A. Al-Mandhari. 2014. “Shear strength of Omani sand treated with biopolymer.” In Proc., 7th Int. Congress on Environmental Geotechnics: ICEG2014, 1158. Sydney, Australia: Engineers Australia.
Qureshi, M. U., I. Chang, and K. Al-Sadarani. 2017. “Strength and durability characteristics of biopolymer-treated desert sand.” Geomech. Eng. 12 (5): 785–801. https://doi.org/10.12989/gae.2017.12.5.785.
Rashid, A. S. A., N. Latifi, C. L. Meehan, and K. N. Manahiloh. 2017. “Sustainable improvement of tropical residual soil using an environmentally friendly additive.” Geotech. Geol. Eng. 35 (6): 2613–2623. https://doi.org/10.1007/s10706-017-0265-1.
RILEM. 1985. “Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams.” Mater. Struct. 18 (106): 285–290. https://doi.org/10.1007/BF02472918.
Singh, S. P., and R. Das. 2019. “Geo-engineering properties of expansive soil treated with xanthan gum biopolymer.” Geomech. Geoeng. 15 (2): 107–122. https://doi.org/10.1080/17486025.2019.1632495.
Srawley, J. E. 1976. “Wide range stress intensity factor expressions for ASTM E-399 standard fracture toughness specimens.” Int. J. Fract. 12 (3): 475–476. https://doi.org/10.1007/BF00032844.
Tada, H., P. Paris, and G. Irwin. 1973. The stress analysis of cracks handbook. Hellertown, PA: Del Research Corporation.
Tang, C.-S., X.-J. Pei, D.-Y. Wang, B. Shi, and J. Li. 2015. “Tensile strength of compacted clayey soil.” J. Geotech. Geoenviron. Eng. 141 (4): 04014122. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001267.
Tavallaie, R., Z. Talebpour, J. Azad, and M. R. Soudi. 2011. “Simultaneous determination of pyruvate and acetate levels in xanthan biopolymer by infrared spectroscopy: Effect of spectral pre-processing for solid-state analysis.” Food Chem. 124 (3): 1124–1130. https://doi.org/10.1016/j.foodchem.2010.07.016.
Tollenaar, R. N., L. A. van Paassen, and C. Jommi. 2017. “Experimental evaluation of the effects of pull rate on the tensile behavior of a clay.” Appl. Clay Sci. 144 (23): 131–140. https://doi.org/10.1016/j.clay.2017.04.026.
Varsei, M., G. A. Miller, and A. Hassanikhah. 2016. “Novel approach to measuring tensile strength of compacted clayey soil during desiccation.” Int. J. Geomech. 16 (6): D4016011. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000705.
Viswanadham, B. V. S., B. K. Jha, and S. N. Pawar. 2009. “Experimental study on flexural testing of compacted soil beams.” J. Mater. Civ. Eng. 22 (5): 460–468. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000045.
Wang, J., S. Huang, W. Guo, Z. Qiu, and K. Kang. 2020. “Experimental study on fracture toughness of a compacted clay using semi-circular bend specimen.” Eng. Fract. Mech. 224 (1): 106814. https://doi.org/10.1016/j.engfracmech.2019.106814.
Wang, J.-J., J.-G. Zhu, C. Chiu, and H. Zhang. 2007. “Experimental study on fracture toughness and tensile strength of a clay.” Eng. Geol. 94 (1–2): 65–75. https://doi.org/10.1016/j.enggeo.2007.06.005.
Whitcomb, P. J., and C. Macosko. 1978. “Rheology of xanthan gum.” J. Rheol. 22 (5): 493–505. https://doi.org/10.1122/1.549485.
Yokoi, H., M. Shiraki, J. Hirose, S. Hayashi, and Y. Takasaki. 1996. “Flocculation properties of xanthan produced by Xanthomonas campestris.” Biotechnol. Tech. 10 (10): 789–792. https://doi.org/10.1007/BF00222567.
Yoshida, S., and P. D. Hallett. 2008. “Impact of hydraulic suction history on crack growth mechanics in soil.” Water Resour. Res. 44 (5): W00C01. https://doi.org/10.1029/2007WR006055.
Zhang, B., P. D. Hallett, and G. Zhang. 2008. “Increase in the fracture toughness and bond energy of clay by a root exudate.” Eur. J. Soil Sci. 59 (5): 855–862. https://doi.org/10.1111/j.1365-2389.2008.01045.x.
Zhang, B., Q. Li, H. Yuan, and X. Sun. 2015. “Tensile fracture characteristics of compacted soils under uniaxial tension.” J. Mater. Civ. Eng. 27 (10): 04014274. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001250.
Zohuriaan, M. J., and F. Shokrolahi. 2004. “Thermal studies on natural and modified gums.” Polym. Test 23 (5): 575–579. https://doi.org/10.1016/j.polymertesting.2003.11.001.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 1January 2021

History

Received: Dec 6, 2019
Accepted: Jun 30, 2020
Published online: Oct 27, 2020
Published in print: Jan 1, 2021
Discussion open until: Mar 27, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Omid Reza Barani [email protected]
Assistant Professor, Dept. of Civil Engineering, K.N. Toosi Univ. of Technology, P.O. Box 15875-4416, Tehran, Iran (corresponding author). Email: [email protected]
Pourya Barfar
Graduate Student, Dept. of Civil Engineering, K.N. Toosi Univ. of Technology, P.O. Box 15875-4416, Tehran, Iran.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share