Technical Papers
Oct 25, 2020

Electrochemical Impedance Spectroscopic Analyses of the Influence of the Surface Nanocrystallization on the Passivation of Carbon Steel in the Pore Solution

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 1

Abstract

This research aimed to apply different models on electrochemical impedance spectroscopy to study the influence of grain refinement and straining obtained from surface mechanical attrition treatment on the passivation of carbon steel in an alkaline solution at open circuit and different passivating potentials. Based on the power law model, the graphical presentation of capacitances at high frequencies and the SIMPLEX method at low frequencies were used to evaluate the electrochemical properties of the interface. The point defect model was used to estimate point defects diffusivity of the passive film in the passivating potential range. Results showed the oxide layer formed on a more strained and grain refined surface was thinner but less porous.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The data used to plot the complex-capacitance diagrams shown in Fig. 7 are available from the corresponding author upon reasonable request.

Acknowledgments

This work was conducted in the Corrosion Research Laboratory at Clemson University.

References

Afshari, V., and C. Dehghanian. 2009. “Effects of grain size on the electrochemical corrosion behavior of electrodeposited nano crystalline Fe coatings in alkaline solution.” Corros. Sci. 51 (8): 1844–1849. https://doi.org/10.1016/j.corsci.2009.05.015.
Ahn, S. J., and H. S. Kwon. 2005. “Diffusivity of point defects in the passive film on Fe.” J. Electroanal. Chem. 579 (2): 311–319. https://doi.org/10.1016/j.jelechem.2005.03.003.
Ajami, A., H. Mirzadeh, and M. Najafi. 2020. “Tempering of cold-rolled martensite in mild steel and elucidating the effects of alloying elements.” J. Mater. Eng. Perform. 29 (2): 858–865. https://doi.org/10.1007/s11665-020-04638-8.
Alexander, C. L., B. Tribollet, and M. E. Orazem. 2015. “Contribution of surface distributions to constant-phase-element (CPE) behavior: 1. Influence of roughness.” Electrochim. Acta 173 (Aug): 416–424. https://doi.org/10.1016/j.electacta.2015.05.010.
Alexander, C. L., B. Tribollet, and M. E. Orazem. 2016. “Contribution of surface distributions to constant-phase-element (CPE) behavior: 2. Capacitance.” Electrochim. Acta 188 (Jan): 566–573. https://doi.org/10.1016/j.electacta.2015.11.135.
Allagui, A., D. Zhang, I. Khakpour, A. S. Elwakil, and C. Wang. 2019. “Quantification of memory in fractional-order capacitors.” J. Phys. D: Appl. Phys. 53 (2): 02LT03. https://doi.org/10.1088/1361-6463/ab4e73.
Arifvianto, B. S., M. Mahardika, P. Dewo, P. T. Iswanto, and U. A. Salim. 2011. “Effect of surface mechanical attrition treatment (SMAT) on micro hardness, surface roughness and wettability of AISI 316L.” Mater. Chem. Phys. 125 (3): 418–426. https://doi.org/10.1016/j.matchemphys.2010.10.038.
ASTM. 2015. Standard specification for high-strength low-alloy columbium-vanadium structural steel. ASTM A572/A572M-15. West Conshohocken, PA: ASTM.
Bagheri, S., and M. Guagliano. 2009. “Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys.” Surf. Eng. 25 (1): 3–14. https://doi.org/10.1179/026708408X334087.
Barrès, T., B. Tribollet, O. Stephan, H. Montigaud, M. Boinet, and Y. Cohin. 2017. “Characterization of the porosity of silicon nitride thin layers by electrochemical impedance spectroscopy.” Electrochim. Acta 227 (Feb): 1–6. https://doi.org/10.1016/j.electacta.2017.01.008.
Benoit, M., C. Bataillon, B. Gwinner, F. Miserque, M. E. Orazem, C. M. Sánchez-Sánchez, B. Tribollet, and V. Vivier. 2016. “Comparison of different methods for measuring the passive film thickness on metals.” Electrochim. Acta 201 (May): 340–347. https://doi.org/10.1016/j.electacta.2015.12.173.
Brug, G. J., A. L. G. van den Eeden, M. Sluyters-Rehbach, and J. H. Sluyters. 1984. “The analysis of electrode impedances complicated by the presence of a constant phase element.” J. Electroanal. Chem. Interfacial Electrochem. 176 (1–2): 275–295. https://doi.org/10.1016/S0022-0728(84)80324-1.
Cattarin, S., M. Musiani, B. Tribollet, and V. Vivier. 2009. “Impedance of passive oxide films with graded thickness: Influence of the electrode and cell geometry.” 54 (27): 6963–6970. https://doi.org/10.1016/j.electacta.2009.07.004.
Chakri, S., I. Frateur, M. E. Orazem, E. M. M. Sutter, T. T. M. Tran, B. Tribollet, and V. Vivier. 2017. “Improved EIS analysis of the electrochemical behavior of carbon steel in alkaline solution.” Electrochim. Acta 246 (Aug): 924–930. https://doi.org/10.1016/j.electacta.2017.06.096.
Chen, Y., N. G. Rudawski, E. Lambers, and M. E. Orazem. 2017. “Application of impedance spectroscopy and surface analysis to obtain oxide film thickness.” J. Electrochem. Soc. 164 (9): C563. https://doi.org/10.1149/2.1061709jes.
Cheng, Y. F., C. Yang, and J. L. Luo. 2002. “Determination of the diffusivity of point defects in passive films on carbon steel.” Thin Solid Films 416 (1–2): 169–173. https://doi.org/10.1016/S0040-6090(02)00617-X.
Cullity, B. D., and S. R. Stock. 2001. Elements of diffraction. Upper Saddle River, NJ: Prentice Hall.
Ding, L., and A. Poursaee. 2017. “The impact of sandblasting as a surface modification method on the corrosion behavior of steels in simulated concrete pore solution.” Constr. Build. Mater. 157 (Dec): 591–599. https://doi.org/10.1016/j.conbuildmat.2017.09.140.
Ding, L., H. Torbati-Sarraf, and A. Poursaee. 2018. “The influence of the sandblasting as a surface mechanical attrition treatment on the electrochemical behavior of carbon steel in different pH solutions.” Surf. Coat. Technol. 352 (Oct): 112–119. https://doi.org/10.1016/j.surfcoat.2018.08.013.
DorMohammadi, H., Q. Pang, P. Murkute, L. Árnadóttir, and O. Burkan Isgor. 2019. “Investigation of iron passivity in highly alkaline media using reactive-force field molecular dynamics.” Corros. Sci. 157 (May): 31–40. https://doi.org/10.1016/j.corsci.2019.05.016.
Gatey, A. M., S. S. Hosmani, and R. P. Singh. 2016. “Surface mechanical attrition treated AISI 304L steel: Role of process parameters.” Surf. Eng. 32 (1): 69–78. https://doi.org/10.1179/1743294415Y.0000000056.
Ghods, P., O. B. Isgor, J. R. Brown, F. Bensebaa, and D. Kingston. 2011. “XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties.” Appl. Surf. Sci. 257 (10): 4669–4677. https://doi.org/10.1016/j.apsusc.2010.12.120.
Ghods, P., O. B. Isgor, G. J. C. Carpenter, J. Li, G. A. McRae, and G. P. Gu. 2013. “Nano-scale study of passive films and chloride-induced depassivation of carbon steel rebar in simulated concrete pore solutions using FIB/TEM.” Cem. Concr. Res. 47 (May): 55–68. https://doi.org/10.1016/j.cemconres.2013.01.009.
Ghods, P., O. B. Isgor, G. McRae, and T. Miller. 2009. “The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement.” Cem. Concr. Compos. 31 (1): 2–11. https://doi.org/10.1016/j.cemconcomp.2008.10.003.
Gordon, K., K. Xu, O. Moral, H. Cardenas, and L. Lee. 2009. “Corrosion mitigation in concrete beams using electrokinetic nanoparticle treatment, 365–371. Cleveland: CRC Press.
Gunay, H. B., P. Ghods, O. B. Isgor, G. J. C. Carpenter, and X. Wu. 2013. “Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS.” Appl. Surf. Sci. 274 (Jun): 195–202. https://doi.org/10.1016/j.apsusc.2013.03.014.
Gupta, R. K., and N. Birbilis. 2015. “The influence of nanocrystalline structure and processing route on corrosion of stainless steel: A review.” Corros. Sci. 92 (Mar): 1–15. https://doi.org/10.1016/j.corsci.2014.11.041.
Harrington, S. P., F. Wang, and T. M. Devine. 2010. “The structure and electronic properties of passive and prepassive films of iron in borate buffer.” Electrochim. Acta 55 (13): 4092–4102. https://doi.org/10.1016/j.electacta.2009.11.012.
Hirschorn, B., M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani. 2010a. “Determination of effective capacitance and film thickness from constant-phase-element parameters.” Electrochim. Acta 55 (21): 6218–6227. https://doi.org/10.1016/j.electacta.2009.10.065.
Hirschorn, B., M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, L. Interfaces, U. P. R. Cnrs, and U. Pierre. 2010b. “Constant-phase-element behavior caused by resistivity distributions in films. Part II: Applications.” J. Electrochem. Soc. 157 (12): 458–463. https://doi.org/10.1149/1.3499565.
Itagaki, M., Y. Hatada, I. Shitanda, and K. Watanabe. 2010. “Complex impedance spectra of porous electrode with fractal structure.” Electrochim. Acta 55 (21): 6255–6262. https://doi.org/10.1016/j.electacta.2009.10.016.
Itagaki, M., S. Suzuki, I. Shitanada, and K. Watanabe. 2007. “Electrochemical impedance and complex capacitance to interpret electrochemical capacitor.” Electrochemistry 75 (8): 649–655. https://doi.org/10.5796/electrochemistry.75.649.
Jamesh, M., T. S. N. Sankara Narayanan, P. K. Chu, I. S. Park, and M. H. Lee. 2013. “Effect of surface mechanical attrition treatment of titanium using alumina balls: Surface roughness, contact angle and apatite forming ability.” Front. Mater. Sci. 7 (3): 285–294. https://doi.org/10.1007/s11706-013-0208-6.
Joiret, S., M. Keddam, X. R. Nóvoa, M. C. Pérez, C. Rangel, and H. Takenouti. 2002. “Use of EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M NaOH.” Cem. Concr. Compos. 24 (1): 7–15. https://doi.org/10.1016/S0958-9465(01)00022-1.
Keddam, M., H. Takenouti, X. Nóvoa, C. Andrade, and C. Alonso. 1997. “Impedance measurements on cement paste.” Cem. Concr. Res. 27 (8): 1191–1201. https://doi.org/10.1016/S0008-8846(97)00117-8.
Khakpour, I., A. Rabiei Baboukani, A. Allagui, and C. Wang. 2019. “Bipolar exfoliation and in situ deposition of high-quality graphene for supercapacitor application.” ACS Appl. Energy Mater. 2 (7): 4813–4820. https://doi.org/10.1021/acsaem.9b00479.
Khatami, R., A. Fattah-alhosseini, and M. K. Keshavarz. 2017. “Effect of grain refinement on the passive and electrochemical behavior of 2024 Al alloy.” J. Alloys Compd. 708 (Jun): 316–322. https://doi.org/10.1016/j.jallcom.2017.03.031.
Kiseleva, T. Y., A. A. Novakova, T. F. Grigorieva, and A. P. Barinova. 2004. “Iron and indium interactions during mechanical attrition.” J. Alloys Compd. 383 (1–2): 94–97. https://doi.org/10.1016/j.jallcom.2004.04.015.
Li, Y., and Y. F. Cheng. 2016. “Effect of surface finishing on early-stage corrosion of a carbon steel studied by electrochemical and atomic force microscope characterizations.” Appl. Surf. Sci. 366 (Mar): 95–103. https://doi.org/10.1016/j.apsusc.2016.01.081.
Liu, G., S. C. Wang, X. F. Lou, J. Lu, and K. Lu. 2001. “Low carbon steel with nanostructured surface layer induced by high-energy shot peening.” Scr. Mater. 44 (8–9): 1791–1795. https://doi.org/10.1016/S1359-6462(01)00738-2.
Lu, K., and J. Lu. 2004. “Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment.” Mater. Sci. Eng. A 375 (1–2): 38–45. https://doi.org/10.1016/j.msea.2003.10.261.
Macdonald, D., S. Biaggio, and H. Song. 1992. “Steady state passive films interfacial kinetic effects and diagnostic criteria.” J. Electrochem. Soc. 139 (1): 170–177. https://doi.org/10.1149/1.2069165.
Macdonald, D. D. 1992. “The point defect model for the passive state.” J. Electrochem. Soc. 139 (12): 3434. https://doi.org/10.1149/1.2069096.
Macdonald, D. D. 1999. “Passivity—The key to our metals-based civilization.” Pure Appl. Chem. 71 (6): 951–978. https://doi.org/10.1351/pac199971060951.
Macdonald, D. D. 2011. “The history of the point defect model for the passive state: A brief review of film growth aspects.” Electrochim. Acta 56 (4): 1761–1772. https://doi.org/10.1016/j.electacta.2010.11.005.
Macdonald, D. D., and M. Urquidi-Macdonald. 1990. “Theory of steady-state passive films.” J. Electrochem. Soc. 137 (8): 2395–2402. https://doi.org/10.1149/1.2086949.
Marcelin, S., B. Ter-Ovanessian, and B. Normand. 2016. “Electronic properties of passive films from the multi-frequency Mott-Schottky and power-law coupled approach.” Electrochem. Commun. 66 (May): 62–65. https://doi.org/10.1016/j.elecom.2016.03.003.
Meresht, E. S., T. S. Farahani, and J. Neshati. 2011. “Failure analysis of stress corrosion cracking occurred in a gas transmission steel pipeline.” Eng. Facil. Anal. 18 (3): 963–970. https://doi.org/10.1016/j.engfailanal.2010.11.014.
Merkle, K. L. 1994. “Atomic structure of grain boundaries.” J. Phys. Chem. Solids 55 (10): 991. https://doi.org/10.1016/0022-3697(94)90119-8.
Merkle, K. L., and D. J. Smith. 1987. “Atomic structure of symmetric tilt grain boundaries in NiO.” Phys. Rev. Lett. 59 (25): 2887–2890. https://doi.org/10.1103/PhysRevLett.59.2887.
Nastasi, M., D. M. Parkin, and H. Gleiter. 1993. Mechanical properties and deformation behavior of materials having ultra-fine microstructures. Dordrecht, Netherlands: Springer.
Pei, X., M. Noël, M. Green, A. Fam, and G. Shier. 2017. “Cementitious coatings for improved corrosion resistance of steel reinforcement.” Surf. Coat. Technol. 315 (Apr): 188–195. https://doi.org/10.1016/j.surfcoat.2017.02.036.
Petrov, Y. N., M. A. Vasylyev, L. N. Trofimova, I. N. Makeeva, and V. S. Filatova. 2015. “Layer wise evolution of the Cu–Zn alloy microstructure after sandblasting.” Appl. Surf. Sci. 327 (Feb): 1–6. https://doi.org/10.1016/j.apsusc.2014.10.162.
Pour-Ali, S., A. R. Kiani-Rashid, and A. Babakhani. 2017. “Surface nanocrystallization and gradient microstructural evolutions in the surface layers of 321 stainless steel alloy treated via severe shot peening.” Vacuum 144 (Oct): 152–159. https://doi.org/10.1016/j.vacuum.2017.07.016.
Pour-Ali, S., A. R. Kiani-Rashid, A. Babakhani, S. Virtanen, and M. Allieta. 2018. “Correlation between the surface coverage of severe shot peening and surface microstructural evolutions in AISI 321: A TEM, FE-SEM and GI-XRD study.” Surf. Coat. Technol. 334 (Aug): 461–470. https://doi.org/10.1016/j.surfcoat.2017.11.062.
Poursaee, A. 2016. “Temperature dependence of the formation of the passivation layer on carbon steel in high alkaline environment of concrete pore solution.” Electrochem. Commun. 73 (Dec): 24–28. https://doi.org/10.1016/j.elecom.2016.10.003.
Poursaee, A., and C. M. Hansson. 2007. “Reinforcing steel passivation in mortar and pore solution.” Cem. Concr. Res. 37 (7): 1127–1133. https://doi.org/10.1016/j.cemconres.2007.04.005.
Rai, P. K., S. Shekhar, and K. Mondal. 2018. “Development of gradient microstructure in mild steel and grain size dependence of its electrochemical response.” Corros. Sci. 138 (Jul): 85–95. https://doi.org/10.1016/j.corsci.2018.04.009.
Ralston, K. D., and N. Birbilis. 2010. “Effect of grain size on corrosion: A review.” Corrosion 66 (7): 1–13. https://doi.org/10.5006/1.3462912.
Ralston, K. D., N. Birbilis, and C. H. J. Davies. 2010. “Revealing the relationship between grain size and corrosion rate of metals.” Sci. Mater. 63 (12): 1201–1204. https://doi.org/10.1016/j.scriptamat.2010.08.035.
Ryan, M. R., R. C. Newman, and G. E. Thompson. 1995. “An STM study of the passive film formed on iron in borate buffer solution.” J. Electrochem. Soc. 142 (10): 177–179. https://doi.org/10.1149/1.2050035.
Saario, T. 2001. “Conduction mechanism of the passive film on iron based on contact electric impedance and resistance measurements.” J. Electrochem. Soc. 148 (6): B243. https://doi.org/10.1149/1.1371976.
Sánchez, M., J. Gregori, C. Alonso, J. J. García-Jareño, H. Takenouti, and F. Vicente. 2007. “Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores.” Electrochim. Acta 52 (27): 7634–7641. https://doi.org/10.1016/j.electacta.2007.02.012.
Sánchez, M., J. Gregori, M. C. Alonso, J. J. García-Jareño, and F. Vicente. 2006. “Anodic growth of passive layers on steel rebars in an alkaline medium simulating the concrete pores.” Electrochim. Acta 52 (1): 47–53. https://doi.org/10.1016/j.electacta.2006.03.071.
Sánchez-Moreno, M., H. Takenouti, J. J. García-Jareño, F. Vicente, and C. Alonso. 2009. “A theoretical approach of impedance spectroscopy during the passivation of steel in alkaline media.” Electrochim. Acta 54 (28): 7222–7226. https://doi.org/10.1016/j.electacta.2009.07.013.
Sato, N. 1998. Electrochemistry at metal and semiconductor electrodes. Amsterdam, Netherlands: Elsevier.
Schreiber, A., C. Rosenkranz, and M. M. Lohrengel. 2007. “Grain-dependent anodic dissolution of iron.” Electrochim. Acta 52 (27): 7738–7745. https://doi.org/10.1016/j.electacta.2006.12.062.
Shi, J., J. Ming, and W. Sun. 2018a. “Influence of surface condition on the electrochemical behavior of alloy steel in saturated Ca(OH)2 solution.” J. Mater. Civ. Eng. 30 (9): 04018212. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002423.
Shi, J., D. Wang, J. Ming, and W. Sun. 2018b. “Long-term electrochemical behavior of low-alloy steel in simulated concrete pore solution with chlorides.” J. Mater. Civ. Eng. 30 (4): 04018042. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002194.
Shi, J., D. Wang, J. Ming, and W. Sun. 2018c. “Passivation and pitting corrosion behavior of a novel alloy steel (00Cr10MoV) in simulated concrete pore solution.” J. Mater. Civ. Eng. 30 (10): 04018232. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002455.
Shin, S. Y., B. Hwang, S. Lee, N. J. Kim, and S. S. Ahn. 2007. “Correlation of microstructure and charpy impact properties in API X70 and X80 line-pipe steels.” Mater. Sci. Eng. 458 (1–2): 281–289. https://doi.org/10.1016/j.msea.2006.12.097.
Soleimani, M., H. Mirzadeh, and C. Dehghanian. 2020. “Effects of tempering on the mechanical and corrosion properties of dual phase steel.” Mater. Today Commun. 22 (Mar): 100745. https://doi.org/10.1016/j.mtcomm.2019.100745.
Song, D., A. Ma, W. Sun, J. Jiang, J. Jiang, D. Yang, and G. Guo. 2014. “Improved corrosion resistance in simulated concrete pore solution of surface nanocrystallized rebar fabricated by wire-brushing.” Corros. Sci. 82 (May): 437–441. https://doi.org/10.1016/j.corsci.2014.01.034.
Taberna, P. L., P. Simon, and J. F. Fauvarque. 2003. “Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors.” J. Electrochem. Soc. 150 (3): 292–300. https://doi.org/10.1149/1.1543948.
Tao, N. R., Z. B. Wang, W. P. Tong, M. L. Sui, J. Lu, and K. Lu. 2002. “An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment.” Acta Mater. 50 (18): 4603–4616. https://doi.org/10.1016/S1359-6454(02)00310-5.
Tjong, S. C., and H. Chen. 2004. “Nanocrystalline materials and coatings.” Mater. Sci. Eng. 45 (1–2): 1–88. https://doi.org/10.1016/j.mser.2004.07.001.
Toney, M. F. 1997. “Atomic structure of the passive oxide film formed on iron.” Phys. Rev. Lett. 79 (21): 4282. https://doi.org/10.1103/PhysRevLett.79.4282.
Torbati-Sarraf, H., and A. Poursaee. 2018a. “Corrosion of coupled steels with different microstructures in concrete environment.” Constr. Build. Mater. 167 (Apr): 680–687. https://doi.org/10.1016/j.conbuildmat.2018.02.083.
Torbati-Sarraf, H., and A. Poursaee. 2018b. “Study of the passivation of carbon steel in simulated concrete pore solution using scanning electrochemical microscope (SECM).” Materialia 2 (Oct): 19–22. https://doi.org/10.1016/j.mtla.2018.08.011.
Torbati-Sarraf, H., and A. Poursaee. 2019. “Corrosion improvement of carbon steel in concrete environment through modification of steel microstructure.” J. Mater. Civ. Eng. 31 (5): 04019042. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002677.
Torbati-Sarraf, H., M. Shabani, P. D. Jablonski, G. J. Pataky, and A. Poursaee. 2019a. “The influence of incorporation of Mn on the pitting corrosion performance of CrFeCoNi high entropy alloy at different temperatures.” Mater. Des. 184 (Dec): 108170. https://doi.org/10.1016/j.matdes.2019.108170.
Torbati-Sarraf, H., S. A. Torbati-Sarraf, A. Poursaee, and T. G. Langdon. 2019b. “Electrochemical behavior of a magnesium ZK60 alloy processed by high-pressure torsion.” Corros. Sci. 154 (Sep): 90–100. https://doi.org/10.1016/j.corsci.2019.04.006.
Torkan, A., A. R. Baboukani, and I. Khakpour. 2018. “Corrosion behavior of AA5038 nanostructured aluminum alloy produced by accumulative roll-bonding.” Nanosci. Nanometrol. 4 (2): 34–40.
Volpi, E., A. Olietti, M. Stefanoni, and S. P. Trasatti. 2015. “Electrochemical characterization of mild steel in alkaline solutions simulating concrete environment.” J. Electroanal. Chem. 736 (Jan): 38–46. https://doi.org/10.1016/j.jelechem.2014.10.023.
Wang, P., H. Qiao, Y. Zhang, Y. Li, K. Chen, and Q. Feng. 2020. “Three-dimensional characteristics of steel corrosion and corrosion-induced cracks in magnesium oxychloride cement concrete monitored by X-ray computed tomography.” Constr. Build. Mater. 246 (Jun): 118504. https://doi.org/10.1016/j.conbuildmat.2020.118504.
Wang, Z. B., J. Lu, and K. Lu. 2006. “Wear and corrosion properties of a low carbon steel processed by means of SMAT followed by lower temperature chromizing treatment.” Surf. Coat. Technol. 201 (6): 2796–2801. https://doi.org/10.1016/j.surfcoat.2006.05.019.
Wei, Y., H. Cui, H. Wei, B. Liu, H. Du, and L. Hou. 2019. “Improving mechanical properties for pure irons by local surface mechanical attrition treatment.” Mater. Sci. Technol. 35 (10): 1257–1264. https://doi.org/10.1080/02670836.2019.1619293.
Williamson, J., J. Azad, and O. B. Isgor. 2015. “Modeling electronic properties of the passive films on carbon steel in simulated concrete pore solutions.” J. Electrochem. Soc. 162 (12): C619. https://doi.org/10.1149/2.0091512jes.
Williamson, J., and O. B. Isgor. 2016. “The effect of simulated concrete pore solution composition and chlorides on the electronic properties of passive films on carbon steel rebar.” Corros. Sci. 106 (May): 82–95. https://doi.org/10.1016/j.corsci.2016.01.027.
Zhang, X., J. C. Wren, I. Betova, and M. Bojinov. 2011. “Estimation of kinetic parameters of the passive state of carbon steel in mildly alkaline solutions from electrochemical impedance spectroscopic and X-ray photoelectron spectroscopic data.” Electrochim. Acta 56 (17): 5910–5918. https://doi.org/10.1016/j.electacta.2011.03.145.
Zhang, Y., and Q. Li. 2006. “Electrochemical study on semiconductive properties of the passive film on rebar in concrete.” J. Zhejiang Univ. Sci. A 7 (8): 1447–1452. https://doi.org/10.1631/jzus.2006.A1447.
Zhang, Y., and A. Poursaee. 2015. “Passivation and corrosion behavior of carbon steel in simulated concrete pore solution under tensile and compressive stresses.” J. Mater. Civ. Eng. 27 (8): 1–9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001199.
Zhou, L., G. Liu, X. L. Ma, and K. Lu. 2008. “Strain-induced refinement in a steel with spheroidal cementite subjected to surface mechanical attrition treatment.” Acta Mater. 56 (1): 78–87. https://doi.org/10.1016/j.actamat.2007.09.003.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 1January 2021

History

Received: Dec 19, 2019
Accepted: Jun 30, 2020
Published online: Oct 25, 2020
Published in print: Jan 1, 2021
Discussion open until: Mar 25, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral Research Scholar, Dept. of Material Science, Arizona State Univ., 781 S Terrace Rd., Tempe, AZ 85287 (corresponding author). ORCID: https://orcid.org/0000-0002-9204-3248. Email: [email protected]
Postdoctoral Research Scholar, Energy and Environmental Science and Technology, Idaho National Laboratory, 1955 N. Fremont Ave., Idaho Falls, ID 83415. ORCID: https://orcid.org/0000-0002-6035-5976. Email: [email protected]
Graduate Research Assistant, Dept. of Engineering, Florida International Univ., 10555 W Flagler St., Miami, FL 33174. ORCID: https://orcid.org/0000-0003-3930-969X. Email: [email protected]
A. Poursaee [email protected]
Associate Professor, Glenn Dept. of Civil Engineering, Dept. of Materials Science and Engineering, Clemson Univ., Clemson, SC 29634. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share