Open access
Technical Papers
Aug 25, 2020

Accelerated Laboratory Assessment of Discrete Sacrificial Anodes for Rehabilitation of Salt-Contaminated Reinforced Concrete

Publication: Journal of Materials in Civil Engineering
Volume 32, Issue 11

Abstract

For patch repairs of chloride contaminated RC structures, the use of discrete sacrificial anodes (DSAs) is indispensable. Without DSAs embedded, due to the ring effect, the failure of the RC around the patch area is accelerated. DSAs are increasingly being used, but few studies have evaluated the effectiveness of different DSAs and effects of the surrounding environment on the performance of different DSAs. This study employed four electrical parameters and electrochemical impedance spectroscopy (EIS) to evaluate three types of DSAs embedded in chloride-contaminated concrete through wet–dry and freeze–thaw cycles. The corrosion of the reinforcements is a stochastic process and the bound chloride ions play an important role in determining the corrosion state of the reinforcement. Most of the DSAs provided effective cathodic protection, but the effectiveness of DSAs could be influenced by the corrosion state of the reinforcement. The wet–dry and freeze–thaw cycles had significant influence on the performance of two types of the DSAs. Current DSA designs do not fully utilize the embedded Zn alloy.

Formats available

You can view the full content in the following formats:

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This work was financially supported by a gift fund from Simpson Strong-Tie Company. The authors extend their appreciation to Dr. Mehdi Honarvar Nazari for help with the EIS and data interpretation and to Junliang Wu for help with the measurements of half-cell potential, depolarized potential, and instant-on potential. BASF–United States is acknowledged for donating the water-reducing admixture used in this work. The ideas of improving DSA design presented in this work have been protected by a patent application.

References

Ahmad, S. 2003. “Reinforcement corrosion in concrete structures, its monitoring and service life prediction: A review.” Cem. Concr. Compos. 25 (4): 459–471. https://doi.org/10.1016/S0958-9465(02)00086-0.
Alonso, C., C. Andrade, M. Castellote, and P. Castro. 2000. “Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar.” Cem. Concr. Res. 30 (7): 1047–1055. https://doi.org/10.1016/S0008-8846(00)00265-9.
Angst, U. M., B. Elsener, C. K. Larsen, and Ø. Vennesland. 2011. “Chloride induced reinforcement corrosion: Electrochemical monitoring of initiation stage and chloride threshold values.” Corros. Sci. 53 (4): 1451–1464. https://doi.org/10.1016/j.corsci.2011.01.025.
ASTM. 2015a. Standard test method for corrosion potentials of uncoated reinforcing steel in concrete. C876. West Conshohocken, PA: ASTM.
ASTM. 2015b. Standard test method for resistance of concrete to rapid freezing and thawing. C666/C666. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard specification for Portland cement. C150/C150M-16e1. West Conshohocken, PA: ASTM.
Basheer, L., J. Kropp, and D. J. Cleland. 2001. “Assessment of the durability of concrete from its permeation properties: A review.” Constr. Build. Mater. 15 (2–3): 93–103. https://doi.org/10.1016/S0950-0618(00)00058-1.
Bertolini, L., F. Bolzoni, P. Pedeferri, L. Lazzari, and T. Pastore. 1998. “Cathodic protection and cathodic preventionin concrete: Principles and applications.” J. Appl. Electrochem. 28 (12): 1321–1331. https://doi.org/10.1023/A:1003404428827.
Bertolini, L., M. Gastaldi, M. Pedeferri, and E. Redaelli. 2002. “Prevention of steel corrosion in concrete exposed to seawater with submerged sacrificial anodes.” Corros. Sci. 44 (7): 1497–1513. https://doi.org/10.1016/S0010-938X(01)00168-8.
Boshkov, N., K. Petrov, D. Kovacheva, S. Vitkova, and S. Nemska. 2005. “Influence of the alloying component on the protective ability of some zinc galvanic coatings.” Electrochim. Acta 51 (1): 77–84. https://doi.org/10.1016/j.electacta.2005.03.049.
Bouteiller, V., C. Cremona, V. Baroghel-Bouny, and A. Maloula. 2012. “Corrosion initiation of reinforced concretes based on Portland or GGBS cements: Chloride contents and electrochemical characterizations versus time.” Cem. Concr. Res. 42 (11): 1456–1467. https://doi.org/10.1016/j.cemconres.2012.07.004.
Du, S., H. Zha, Y. Ge, Z. Yang, and X. Shi. 2017. “Laboratory investigation into the modification of transport properties of high-volume fly ash mortar by chemical admixtures.” J. Materials Civ. Eng. 29 (10): 04017184.
Duffó, G. S., S. B. Farina, and C. M. Giordano. 2009. “Characterization of solid embeddable reference electrodes for corrosion monitoring in reinforced concrete structures.” Electrochim. Acta 54 (3): 1010–1020. https://doi.org/10.1016/j.electacta.2008.08.025.
Dugarte, M., A. A. Sagüés, R. G. Powers, and I. R. Lasa. 2007. Evaluation of point anodes for corrosion prevention in reinforced concrete. Houston: NACE International.
Feliu, V., J. A. González, C. Andrade, and S. Feliu. 1998. “Equivalent circuit for modelling the steel-concrete interface. Part I: Experimental evidence and theoretical predictions.” Corros. Sci. 40 (6): 975–993. https://doi.org/10.1016/S0010-938X(98)00036-5.
Glass, G. K., and N. R. Buenfeld. 1997. “The presentation of the chloride threshold level for corrosion of steel in concrete.” Corros. Sci. 39 (5): 1001–1013. https://doi.org/10.1016/S0010-938X(97)00009-7.
Glass, G. K., and N. R. Buenfeld. 2000. “The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete.” Corros. Sci. 42 (2): 329–344. https://doi.org/10.1016/S0010-938X(99)00083-9.
Liu, Y., and X. Shi. 2009. “Cathodic protection technologies for reinforced concrete: Introduction and recent developments.” Rev. Chem. Eng. 25 (5–6): 339–388. https://doi.org/10.1515/REVCE.2009.25.5-6.339.
Martínez, I., and C. Andrade. 2008. “Application of EIS to cathodically protected steel: Tests in sodium chloride solution and in chloride contaminated concrete.” Corros. Sci. 50 (10): 2948–2958. https://doi.org/10.1016/j.corsci.2008.07.012.
Montemor, M. F., A. M. P. Simões, and M. M. Salta. 2000. “Effect of fly ash on concrete reinforcement corrosion studied by EIS.” Cem. Concr. Compos. 22 (3): 175–185. https://doi.org/10.1016/S0958-9465(00)00003-2.
Moreno, M., W. Morris, M. G. Alvarez, and G. S. Duffó. 2004. “Corrosion of reinforcing steel in simulated concrete pore solutions: Effect of carbonation and chloride content.” Corros. Sci. 46 (11): 2681–2699. https://doi.org/10.1016/j.corsci.2004.03.013.
Muralidharan, S., T.-H. Ha, J.-H. Bae, Y.-C. Ha, H.-G. Lee, K.-W. Park, and D.-K. Kim. 2006. “Electrochemical studies on the solid embeddable reference sensors for corrosion monitoring in concrete structure.” Mater. Lett. 60 (5): 651–655. https://doi.org/10.1016/j.matlet.2005.09.058.
Nazari, M. H., X. Shi, E. Jackson, Y. Zhang, and Y. Li. 2017a. “Laboratory investigation of washing practices and bio-based additive for mitigating metallic corrosion by magnesium chloride deicer.” J. Mater. Civ. Eng. 29 (1): 04016187. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001727.
Nazari, M. H., M. S. Shihab, L. Cao, E. A. Havens, and X. Shi. 2017b. “A peony-leaves-derived liquid corrosion inhibitor: Protecting carbon steel from NaCl.” Green Chem. Lett. Rev. 10 (4): 359–379. https://doi.org/10.1080/17518253.2017.1388446.
Rajani, B., and Y. Kleiner. 2003. “Protecting ductile-iron Water Mains: What protection method works best for what soil condition?” J. Am. Water Works Assoc. 95 (11): 110–125. https://doi.org/10.1002/j.1551-8833.2003.tb10497.x.
Ribeiro, D. V., and J. C. C. Abrantes. 2016. “Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach.” Constr. Build. Mater. 111 (May): 98–104. https://doi.org/10.1016/j.conbuildmat.2016.02.047.
Sagüés, A. A., V. Balakrishna, and R. G. Powers. 2005. “An approach for the evaluation of performance of point anodes for corrosion prevention of reinforcing steel in concrete repairs.” In Proc., fib Symp. Structural Concrete and Time, 35–41. Symposium Secretariat: fib Symposium Argentina.
Salinas, D. R., S. G. García, and J. B. Bessone. 1999. “Influence of alloying elements and microstructure on aluminium sacrificial anode performance: Case of Al–Zn.” J. Appl. Electrochem. 29 (9): 1063–1071. https://doi.org/10.1023/A:1003684219989.
Seré, P. R., M. Zapponi, C. I. Elsner, and A. R. Di Sarli. 1998. “Comparative corrosion behaviour of 55Aluminium–zinc alloy and zinc hot-dip coatings deposited on low carbon steel substrates.” Corros. Sci. 40 (10): 1711–1723. https://doi.org/10.1016/S0010-938X(98)00073-0.
Sergi, G. 2011. “Ten-year results of galvanic sacrificial anodes in steel reinforced concrete.” Mater. Corros. 62 (2): 98–104. https://doi.org/10.1002/maco.201005707.
Song, H.-W., C.-H. Lee, and K. Y. Ann. 2008. “Factors influencing chloride transport in concrete structures exposed to marine environments.” Cem. Concr. Compos. 30 (2): 113–121. https://doi.org/10.1016/j.cemconcomp.2007.09.005.
Song, H.-W., and V. Saraswathy. 2007. “Corrosion monitoring of reinforced concrete structures: A review.” Int. J. Electrochem. Sci. 2 (Jan): 1–28.
Trocónis de Rincón, O., Y. Hernández-López, A. de Valle-Moreno, A. A. Torres-Acosta, F. Barrios, P. Montero, P. Oidor-Salinas, and J. R. Montero. 2008. “Environmental influence on point anodes performance in reinforced concrete.” Constr. Build. Mater. 22 (4): 494–503. https://doi.org/10.1016/j.conbuildmat.2006.11.014.
Wang, Z., Q. Zeng, L. Wang, Y. Yao, and K. Li. 2014. “Corrosion of rebar in concrete under cyclic freeze–thaw and Chloride salt action.” Constr. Build. Mater. 53 (Feb): 40–47. https://doi.org/10.1016/j.conbuildmat.2013.11.063.
Yang, Z., W. J. Weiss, and J. Olek. 2006. “Water transport in concrete damaged by tensile loading and freeze–thaw cycling.” J. Mater. Civ. Eng. 18 (3): 424–434. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(424).
Yu, H., X. Shi, W. H. Hartt, and B. Lu. 2010. “Laboratory investigation of reinforcement corrosion initiation and chloride threshold content for self-compacting concrete.” Cem. Concr. Res. 40 (10): 1507–1516. https://doi.org/10.1016/j.cemconres.2010.06.004.
Yuan, Q., C. Shi, G. De Schutter, K. Audenaert, and D. Deng. 2009. “Chloride binding of cement-based materials subjected to external chloride environment: A review.” Constr. Build. Mater. 23 (1): 1–13. https://doi.org/10.1016/j.conbuildmat.2008.02.004.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 32Issue 11November 2020

History

Received: Mar 15, 2019
Accepted: Mar 24, 2020
Published online: Aug 25, 2020
Published in print: Nov 1, 2020
Discussion open until: Jan 25, 2021

Authors

Affiliations

Jialuo He, S.M.ASCE [email protected]
Graduate Research Assistant, Laboratory of Corrosion Science and Electrochemical Engineering, Dept. of Civil and Environmental Engineering, Washington State Univ., P.O. Box 642910, Pullman, WA 99164-2910. Email: [email protected]
Associate Professor, Laboratory of Corrosion Science and Electrochemical Engineering, Dept. of Civil and Environmental Engineering, Washington State Univ., P.O. Box 642910, Pullman, WA 99164-2910 (corresponding author). ORCID: https://orcid.org/0000-0003-3576-8952. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share