Abstract

The increased contribution of science-intensive clean materials and technologies to the total industrial production is one of the essential prerequisites for the future of sustainable industrial development. Chemical activation based on a nonfired or low-temperature approach for the production of cementitious materials from glassy aluminosilicates, including calcined clays, is an intensively developing and promising clean technology. This study investigated the potential of calcined clays as precursors of alkali-activated cements (AACs) by considering three types of low-grade multimineral clays (with a clay mineral content of <20%). The alkali activation of the calcined clays was analyzed based on the type and content of clay minerals, presence of calcite, calcination temperature, type of alkali activator, and curing conditions. The results indicated that clays containing 20% of 21 layer lattice clay minerals are not suitable as precursors of AACs, while those containing 9%–12% of 11 and/or 21 layer lattice minerals combined with 29%–32% calcite lead to hardened pastes displaying compressive strengths of up to 12.4 MPa after 2 days and 20 MPa after 28 days and after steam curing. The reaction products of 6M NaOH-activated systems determined by XRD, TG/DSC, and FTIR spectroscopy analyses were X-ray amorphous binder gel, calcite (CaCO3), clinozoisite (Ca2Al3(SiO4)(Si2O7)(O,OH)), and gaylussite (CaNa2(CO3)(H2O)5).

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Aïtcin, P. C. 2016. “Science and technology of concrete admixtures.” In Supplementary cementitious materials and blended cements, edited by P. C. Aïtcin and R. J. Flatt, 53–73. Sawston, UK: Woodhead Publishing.
Aldabsheh, I., H. Khoury, J. Wastiels, and H. Rahier. 2015. “Dissolution behavior of Jordanian clay-rich materials in alkaline solutions for alkali activation purpose. I.” Appl. Clay Sci. 115 (Oct): 238–247. https://doi.org/10.1016/j.clay.2015.08.004.
Autef, A., E. Joussein, G. Gasgnier, S. Pronier, I. Sobrados, J. Sanz, and S. Rossignol. 2013. “Role of metakaolin dehydroxylation in geopolymer synthesis.” Powder Technol. 250 (Dec): 33–39. https://doi.org/10.1016/j.powtec.2013.09.022.
Barbosa, V. F. F., K. J. D. MacKenzie, and C. Thaumaturgo. 2000. “Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers.” Int. J. Inorg. Mater. 2 (4): 309–317. https://doi.org/10.1016/S1466-6049(00)00041-6.
Bauer, A., and B. Velde. 1999. “Smectite transformation in high molar KOH solutions.” Clay Miner. 34 (2): 259–273. https://doi.org/10.1180/000985599546226.
Bernal, S. A., E. D. Rodríguez, R. Mejía de Guterrez, M. Gordillo, and J. L. Provis. 2011. “Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends.” J. Mater. Sci. 46 (16): 5477–5486. https://doi.org/10.1007/s10853-011-5490-z.
Borges, P. H. R., N. Banthia, H. A. Alcamand, W. L. Vasconcelos, and E. H. M. Nunes. 2016. “Performance of blended metakaolin/blast furnace slag alkali-activated mortars.” Cem. Concr. Comp. 71 (Aug): 42–52. https://doi.org/10.1016/j.cemconcomp.2016.04.008.
Buchwald, A., M. Hohmann, K. Posern, and E. Brendler. 2009. “The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders.” Appl. Clay Sci. 46 (3): 300–304. https://doi.org/10.1016/j.clay.2009.08.026.
Davidovits, J. 2008. Geopolymer chemistry and applications. Saint-Quentin, France: Institut Géopolymère.
D’Elia, A., D. Pinto, G. Eramo, L. C. Giannossa, G. Ventruti, and R. Laviano. 2018. “Effects of processing on the mineralogy and solubility of carbonate-rich clays for alkaline activation purpose: Mechanical, thermal activation in red/ox atmosphere and their combination.” Appl. Clay Sci. 152 (Feb): 9–21. https://doi.org/10.1016/j.clay.2017.11.036.
Dietel, J., L. N. Warr, M. Bertmer, A. Steudel, G. H. Grathoff, and K. Emmerich. 2017. “The importance of specific surface area in the geopolymerization of heated illitic clay.” Appl. Clay Sci. 139 (Apr): 99–107. https://doi.org/10.1016/j.clay.2017.01.001.
Duxson, P., A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. van Deventer. 2007. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
Eberl, D., and J. Hower. 1977. “The hydrothermal transformation of sodium and potassium smectite into mixed layer clays.” Clay Clay Miner. 25 (3): 215–227. https://doi.org/10.1346/CCMN.1977.0250308.
El Hafid, K., and M. Hajjaji. 2015. “Effects of the experimental factors on the microstructure and the properties of cured alkali-activated heated clay.” Appl. Clay Sci. 116–117 (Nov): 202–210. https://doi.org/10.1016/j.clay.2015.03.015.
Essaidi, N., B. Samet, S. Baklouti, and S. Rossignol. 2014. “Feasibility of producing geopolymers from two different Tunisian clays before and after calcination at various temperatures.” Appl. Clay Sci. 88–89 (Feb): 221–227. https://doi.org/10.1016/j.clay.2013.12.006.
Farmer, V. C. 1999. Data handbook for clay materials and other, edited by H. V. Olephen and J. J. Fripiat. Oxford, UK: Pergamon Press.
Fernández-Jiménez, A., A. Palomo, I. Sobrados, and J. Sanz. 2006. “The role placed by the reactive aluminum content in the alkaline activation of fly ashes.” Microporous Mesoporous Mater. 91 (1–3): 111–119. https://doi.org/10.1016/j.micromeso.2005.11.015.
Ferone, C., B. Liguori, I. Capasso, F. Colangelo, R. Cioffi, E. Cappelletto, and R. Di Maggio. 2015. “Thermally treated clay sediments as geopolymer source material.” Appl. Clay Sci. 107 (Apr): 195–204. https://doi.org/10.1016/j.clay.2015.01.027.
Galán, E., and R. E. Ferrell. 2013. “Genesis of clay minerals.” In Handbook of clay science, edited by F. Bergaya and G. Lagaly. Amsterdam, Netherlands: Elsevier.
Garcia-Lodeiro, I., A. Palomo, A. Fernandez-Jimenez, and D. E. Macphee. 2011. “Compatibility studies between N-A-S-H and C-A-S-H gels: Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O.” Cem. Concr. Res. 41 (9): 923–931. https://doi.org/10.1016/j.cemconres.2011.05.006.
Gartner, E., and T. Sui. 2018. “Alternative cement clinkers.” Cem. Concr. Res. 114 (Dec): 27–39. https://doi.org/10.1016/j.cemconres.2017.02.002.
Gates, W., and A. Bouazza. 2010. “Bentonite transformations in strongly alkaline solutions.” Geotext. Geomembr. 28 (2): 219–225. https://doi.org/10.1016/j.geotexmem.2009.10.010.
Gharzouni, A., L. Ouamara, I. Sobrados, and S. Rossignol. 2018. “Alkali-activated materials from different aluminosilicate sources: Effect of aluminum and calcium availability.” J. Non-Cryst. Sol. 484 (Mar): 14–25. https://doi.org/10.1016/j.jnoncrysol.2018.01.014.
Glukhovsky, V. D. 1959. Gruntosilikaty (soil silicates). Kiev, Ukraine: Gosstroyizdat.
González-García, D. M., L. Téllez-Jurado, F. J. Jiménez-Álvarez, and H. Balmori-Ramírez. 2017. “Structural study of geopolymers obtained from alkali-activated natural pozzolan feldspars.” Ceram. Int. 43 (2): 2606–2613. https://doi.org/10.1016/j.ceramint.2016.11.070.
Khater, H. M. 2012. “Effect of calcium on geopolymerization of aluminosilicate wastes.” J. Mater. Civ. Eng. 24 (1): 92–101. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000352.
Köhler, S., F. Dufaud, and E. Oelkers. 2003. “An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50°C.” Geochim. Cosmochim. Acta 67 (19): 3583–3594. https://doi.org/10.1016/S0016-7037(03)00163-7.
Komadel, P., J. Madejova, M. Janek, W. P. Gates, R. J. Kirkpatrick, and J. W. Stucki. 1996. “Dissolution of hectorite in inorganic acids.” Clays Clay Miner. 44 (2): 228–236. https://doi.org/10.1346/CCMN.1996.0440208.
Krivenko, P. V. 1994. “Alkaline cements.” In Proc., 1st Int. Conf. on Alkaline Cements and Concretes. Kiev, Ukraine.
Lahoti, M., K. K. Wong, E.-H. Yang, and K. H. Tan. 2018. “Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature.” Ceram. Int. 44 (5): 5726–5734. https://doi.org/10.1016/j.ceramint.2017.12.226.
Latella, B. A., D. S. Perera, D. Durce, E. G. Mehrtens, and J. Davis. 2008. “Mechanical properties of metakaolin-based geopolymers with molar ratios of Si/Al2 and Na/Al1.” J. Mater. Sci. 43 (8): 2693–2699. https://doi.org/10.1007/s10853-007-2412-1.
MacKenzie, K. J. D., D. R. M. Brew, R. A. Fletcher, and R. Vagana. 2007. “Formation of aluminosilicate geopolymers from 11 layer-lattice minerals pre-treated by various methods: A comparative study.” J. Mater. Sci. 42 (12): 4667–4674. https://doi.org/10.1007/s10853-006-0173-x.
Maddalena, R., J. J. Roberts, and A. Hamilton. 2018. “Can Portland cement be replaced by low-carbon alternative materials? A study on thermal properties and carbon emissions of innovative cements.” J. Clean. Prod. 186 (6): 933–942. https://doi.org/10.1016/j.jclepro.2018.02.138.
Madejova, J., P. Komadel, and B. Cicel. 1992. Vol. 1 of Geologica carpathica—Series clays. Bratislava, Slovakia: Slovak Academic Press.
Madéjova, J. 2003. “FTIR techniques in clay mineral studies.” Vib. Spectrosc. 31 (1): 1–10. https://doi.org/10.1016/S0924-2031(02)00065-6.
Marsh, A., A. Heath, P. Patureau, M. Evernden, and P. Walker. 2018. “Alkali activation behavior of un-calcined montmorillonite and illite clay minerals.” Appl. Clay Sci. 166 (12): 250–261. https://doi.org/10.1016/j.clay.2018.09.011.
Mehta, A., and R. Siddique. 2016. “An overview of geopolymers derived from industrial by-products.” Constr. Build. Mater. 127 (Nov): 183–198. https://doi.org/10.1016/j.conbuildmat.2016.09.136.
Mwiti, M. J., T. J. Karanja, and W. J. Muthengia. 2018. “Thermal resistivity of chemically activated calcined clays-based cements.” In Calcined clays for sustainable concrete, 327–333. Dordrecht, Netherlands: Springer.
Pacheco-Torgal, F., J. Labrincha, C. Leonelli, A. Palomo, and P. Chindaprasit. 2014. Handbook of alkali-activated cements, mortars and concretes. Cambridge, UK: Elsevier.
Palomo, A., M. T. Blanco-Varela, M. L. Granizo, F. Puertas, T. Vazquez, and M. W. Grutzeck. 1999. “Chemical stability of cementitious materials based on metakaolin.” Cem. Concr. Res. 29 (7): 997–1004. https://doi.org/10.1016/S0008-8846(99)00074-5.
Palomo, A., A. Fernández-Jimenez, and G. Kovalchuck. 2005. “Some key factors affecting the alkali activation of fly ash.” In Proc., 2nd Int. Symp. of Non-Traditional Cement and Concrete. Brno, Czech Republic: Brno Univ. of Technology.
Panagiotopoulou, C., E. Kontori, T. Perraki, and G. Kakali. 2007. “Dissolution of aluminosilicate minerals and by-products in alkaline media.” J. Mater. Sci. 42 (9): 2967–2973. https://doi.org/10.1007/s10853-006-0531-8.
Provis, J. L. 2018. “Alkali-activation of calcined clays: Past, present and future.” In Vol. 16 of Calcined clays for sustainable concrete: RILEM book series, edited by F. Martirena, A. Favier, and K. Scrivener. Dordrecht, Netherlands: Springer.
Provis, J. L., R. J. Myers, C. E. White, V. Rose, and J. S. J. van Deventer. 2012. “X-ray microtomography shows pore structure and tortuosity in alkali-activated binders.” Cem. Concr. Res. 42 (6): 855–864. https://doi.org/10.1016/j.cemconres.2012.03.004.
Provis, J. L., V. Rose, S. A. Bernal, and J. S. J. van Deventer. 2009. “Highresolution nanoprobe X-ray fluorescence characterization of heterogeneous calcium and heavy metal distributions in alkali activated fly ash.” Langmuir 25 (19): 11897–11904. https://doi.org/10.1021/la901560h.
Provis, J. L., and J. S. J. van Deventer. 2014. Alkali activated materials: State-of-the-art report. Berlin: Springer.
Prudhomme, E., P. Michaud, E. Joussein, C. Peyratout, A. Smith, S. Arii-Clacens, J. M. Clacens, and S. Rossignol. 2010. “Silica fume as porogent agent in geo-materials at low temperature.” J. Eur. Ceram. Soc. 30 (7): 1641–1648. https://doi.org/10.1016/j.jeurceramsoc.2010.01.014.
Prudhomme, E., P. Michaud, E. Joussein, C. Peyratout, A. Smith, and S. Rossignol. 2011. “In situ inorganic foams prepared from various clays at low temperature.” Appl. Clay Sci. 51 (1–2): 15–22. https://doi.org/10.1016/j.clay.2010.10.016.
Puertas, F., and A. Fernandez-Jimenez. 2003. “Mineralogical and microstructural characterization of alkali-activated fly ash/slag pastes.” Cem. Concr. Comp. 25 (3): 287–292. https://doi.org/10.1016/S0958-9465(02)00059-8.
Puertas, F., M. Palacios, H. Manzano, J. S. Dolado, A. Rico, and J. Rodríguez. 2011. “A model for the C-A-S-H gel formed in alkali-activated slag cements.” J. Eur. Ceram. Soc. 31 (12): 2043–2056. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036.
Rahier, H., W. Simons, B. Van Melle, and M. Biesemans. 1997. “Low temperature synthesized aluminosilicate glasses. Part III. Influence of composition of the silica solution on production, structure and properties.” J. Mater. Sci. 32: 2237–2247. https://doi.org/10.1023/A:1018563914630.
Rakhimov, R. Z., N. R. Rakhimova, and A. R. Gaifullin. 2017. “Influence of the addition of dispersed fine polymineral calcined clays on the properties of portland cement paste.” Adv. Cem. Res. 29 (1): 21–32. https://doi.org/10.1680/jadcr.16.00060.
Rakhimova, N. R., and R. Z. Rakhimov. 2019a. “Reaction products, structure and properties of alkali-activated metakaolin cements incorporated with supplementary materials: A review.” J. Mater. Res. Technol. 8 (1): 1522–1531. https://doi.org/10.1016/j.jmrt.2018.07.006.
Rakhimova, N. R., and R. Z. Rakhimov. 2019b. “Literature review of advances in materials used in development of alkali-activated mortars, concretes, and composites.” J. Mat. Civ. Eng. 31 (11): 03119002. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002899.
Rakhimova, N. R., R. Z. Rakhimov, V. P. Morozov, A. R. Gaifullin, L. I. Potapova, A. M. Gubaidullina, and Y. N. Osin. 2018. “Marl-based geopolymers incorporated with limestone: A feasibility study.” J. Non-Cryst. Solids. 492 (Jul): 1–10. https://doi.org/10.1016/j.jnoncrysol.2018.04.015.
Rakhimova, N. R., R. Z. Rakhimov, Y. N. Osin, N. I. Naumkina, A. M. Gubaidullina, G. I. Yakovlev, and A. V. Shaybadullina. 2015. “Solidification of nitrate solutions with alkali-activated slag and slag–metakaolin cements.” J. Nucl. Mater. 457 (Feb): 186–195. https://doi.org/10.1016/j.jnucmat.2014.11.068.
Rashad, A. M. 2013. “Alkali-activated metakaolin: A short guide for civil engineer—An overview.” Constr. Build. Mater. 41 (Apr): 751–765. https://doi.org/10.1016/j.conbuildmat.2012.12.030.
Ruiz-Santaquiteria, C., A. Fernández-Jiménez, J. Skibsted, and A. Palomo. 2013. “Clay reactivity: Production of alkali activated cements.” Appl. Clay Sci. 73 (Mar): 11–16. https://doi.org/10.1016/j.clay.2012.10.012.
Ruscher, C. H., A. Schulz, M. H. Gougazeh, and A. Ritzmann. 2014. “Mechanical strength development of geopolymer binder and the effect of quartz content.” In Ceramic engineering and science proceedings book, edited by W. Kriven, J. Wang, Y. Zhou, A. L. Gyekenyesi, S. Kirihara, and S. Widjaja. New York: Wiley.
Samad, S., and A. Shah. 2017. “Role of binary cement including supplementary cementitious material (SCM), in production of environmentally sustainable concrete: A critical review.” Int. J. Sustainable Built. Environ. 6 (2): 663–674. https://doi.org/10.1016/j.ijsbe.2017.07.003.
Schulze, S. E., and J. Rickert. 2019. “Suitability of natural calcined clays as supplementary cementitious material.” Cem. Concr. Comp. 95 (1): 92–97. https://doi.org/10.1016/j.cemconcomp.2018.07.006.
Scrivener, K. L., F. Martirena, S. Bishnoi, and S. Maity. 2018. “Calcined clay limestone cements (LC3).” Cem. Concr. Res. 114 (Dec): 49–56. https://doi.org/10.1016/j.cemconres.2017.08.017.
Sdiri, A., T. Higashi, T. Hatta, F. Jamoussi, and N. Tase. 2010. “Mineralogical and spectroscopic characterization, and potential environmental use of limestone from the Abiod formation, Tunisia.” Environ. Earth Sci. 61 (6): 1275–1287. https://doi.org/10.1007/s12665-010-0450-5.
Shahraki, B. K., B. Mehrabi, K. Gholizadeh, and M. Mohammadinas. 2011. “Thermal behavior of calcite as expansive agent.” J. Min. Metall. Sect. B. 47B (1): 89–97. https://doi.org/10.2298/JMMB1101089S.
Shi, C., A. Fernández-Jiménez, and A. Palomo. 2011. “New cements for the 21st century: The pursuit of an alternative to portland cement.” Cem. Concr. Res. 41 (7): 750–763. https://doi.org/10.1016/j.cemconres.2011.03.016.
Staley, H. F. 1920. Cements for spark-plug electrodes (technologic papers of the National Bureau of Standards). Washington DC: Government Printing Office.
Tchadjié, L. N., J. N. Y. Djobo, N. Ranjbar, H. K. Tchakouté, B. B. D. Kenne, A. Elimbi, and D. Njopwouo. 2016. “Potential of using granite waste as raw material for geopolymer synthesis.” Ceram. Int. 42 (2): 3046–3055. https://doi.org/10.1016/j.ceramint.2015.10.091.
Temuujin, J., A. van Riessen, and R. Williams. 2009. “Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes.” J. Hazard. Mater. 167 (1–3): 82–88. https://doi.org/10.1016/j.jhazmat.2008.12.121.
Tyagi, B., C. D. Chudasama, and R. V. Jasra. 2006. “Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy.” Spectrochimica Acta A. 64A (2): 273–278. https://doi.org/10.1016/j.saa.2005.07.018.
Valentini, L., S. Contessi, M. C. Dalconi, F. Zorzi, and E. Garbin. 2018. “Alkali-activated calcined smectite clay blended with waste calcium carbonate as a low-carbon binder.” J. Clean. Prod. 184 (May): 41–49. https://doi.org/10.1016/j.jclepro.2018.02.249.
Van Deventer, J. S. J., J. L. Provis, and P. Duxson. 2012. “Technical and commercial progress in the adoption of geopolymer cement.” Miner. Eng. 29 (Mar): 89–104. https://doi.org/10.1016/j.mineng.2011.09.009.
Vickers, L., A. van Riessen, and W. D. A. Rickard. 2015. “Precursors and additives for geopolymer synthesis.” In Fire-resistant geopolymers: Role of fibres and fillers to enhance thermal properties, edited by L. Vickers, A. van Riessen, and W. D. A. Rickard. Singapore: Springer.
Xu, H., and J. S. J. van Deventer. 2000. “The geopolymerisation of alumino-silicate minerals.” Int. J. Miner. Process. 59 (3): 247–266. https://doi.org/10.1016/S0301-7516(99)00074-5.
Xu, H., and J. S. J. van Deventer. 2002. “Factors affecting the geopolymerization of alkali-feldspars.” Miner. Metall. Explor. 19 (4): 209–214. https://doi.org/10.1007/BF03403271.
Yip, C. K., G. C. Lukely, and J. S. J. van Deventer. 2005. “The coexistence of geopolymeric gel and calcium silicate hydrate of alkaline activation.” Cem. Concr. Res. 35 (9): 1688–1697. https://doi.org/10.1016/j.cemconres.2004.10.042.
Yousefi, E., and B. Majidi. 2011. “Effects of free quartz on mechanical behaviour of kaolinite based geopolymers.” Mater. Technol. 26 (2): 96–99. https://doi.org/10.1179/175355510X12881754762737.
Yun-Ming, L., H. Cheng-Yong, M. M. Al Bakri, and K. Hussin. 2016. “Structure and properties of clay-based geopolymer cements: A review.” Progr. Mater. Sci. 83 (Oct): 595–629. https://doi.org/10.1016/j.pmatsci.2016.08.002.
Zhang, Y., W. Sun, Q. Chen, and L. Chen. 2007. “Synthesis and heavy metal immobilization behaviors of slag based geopolymer.” J. Hazard. Mater. 143 (1–2): 206–213. https://doi.org/10.1016/j.jhazmat.2006.09.033.
Zhang, Z., H. Wang, X. Yao, and Y. Zhu. 2012. “Effects of halloysite in kaolin on the formation and properties of geopolymers.” Cem. Concr. Comp. 34 (5): 709–715. https://doi.org/10.1016/j.cemconcomp.2012.02.003.
Zibouche, F., H. Kerdjoudj, L. J.-B. d’Espinose, and H. van Damme. 2009. “Geopolymers from Algerian metakaolin. Influence of secondary minerals.” Appl. Clay Sci. 43 (3–4): 453–458. https://doi.org/10.1016/j.clay.2008.11.001.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 32Issue 8August 2020

History

Received: Jun 1, 2019
Accepted: Jan 2, 2020
Published online: May 22, 2020
Published in print: Aug 1, 2020
Discussion open until: Oct 22, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Lecturer and Researcher, Sustainable Developments in Civil Engineering Research Group, Faculty of Civil Engineering, Ton Duc Thang Univ., 19 Nguyen Huu Tho, Tan Phong Ward, District 7, Ho Chi Minh City 700000, Vietnam (corresponding author). ORCID: https://orcid.org/0000-0003-1735-1758. Email: [email protected]
Ravil Z. Rakhimov [email protected]
Professor, Dept. of Building Materials, Kazan State Univ. of Architecture and Engineering, 1 Zelenaya St., Kazan 420043, Russian Federation. Email: [email protected]
Artur R. Bikmukhametov [email protected]
Ph.D. Student, Dept. of Building Materials, Kazan State Univ. of Architecture and Engineering, 1 Zelenaya St., Kazan 420043, Russian Federation. Email: [email protected]
Vladimir P. Morozov [email protected]
Professor, Dept. of Mineralogy and Lithology, Kazan Federal Univ., 18 Kremlyovskaya St., Kazan 420008, Russian Federation. Email: [email protected]
Aleksey A. Eskin [email protected]
Assistant Professor, Dept. of Mineralogy and Lithology, Kazan Federal Univ., 18 Kremlyovskaya St., Kazan 420008, Russian Federation. Email: [email protected]
Taliya Z. Lygina
Deceased; Formerly, Professor, Central Scientific Research Institute of Geology of Industrial Minerals, 4 Zinina St., Kazan 420097, Russian Federation.
Alfiya M. Gubaidullina [email protected]
Assistant Professor, Central Scientific Research Institute of Geology of Industrial Minerals, 4 Zinina St., Kazan 420097, Russian Federation. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share