Abstract

Recycled aggregate concrete is an eco-friendly material that is increasingly being used in new constructions. Nowadays, this application is mainly limited by user’s lack of confidence, as coarse recycled aggregate (CRA) is usually more porous, i.e., it has a higher water absorption, than coarse natural aggregate. This difference is a primary concern for practitioners when they have to comply with durability requirements. Although some uncertainties remain in this regard, significant progress has been made in the last few years concerning the assessment of durable recycled aggregate concrete. This paper reviews this topic and includes aspects related to chloride penetration, sulfate attack, freezing and thawing, high temperature, and alkali-silica reaction. Generally, although there are some particularities related to each type of attack, the high porosity of CRA is compensated by other features, such as different texture, increased mechanical compatibility with the matrix, or content of hydration products. Experimental results in the literature show that there are no reasons to consider that durable, sustainable structures cannot be built with recycled aggregate concrete.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

References

Abbas, A., G. Fathifazl, O. B. Isgor, A. G. Razaqpur, B. Fournier, and S. Foo. 2009. “Durability of recycled aggregate concrete designed with equivalent mortar volume method.” Cem. Concr. Compos. 31 (8): 555–563. https://doi.org/10.1016/j.cemconcomp.2009.02.012.
Adebakin, I. H., and T. O. Ipaye. 2016. “Effect of elevated temperature on the compressive strength of recycled aggregate concrete.” Res. J. Eng. Sci. 5 (9): 1–4.
Ann, K. Y., H. Y. Moon, Y. B. Kim, and J. Ryou. 2008. “Durability of recycled aggregate concrete using pozzolanic materials.” Waste Manage. 28 (6): 993–999. https://doi.org/10.1016/j.wasman.2007.03.003.
Arioz, O. 2007. “Effects of elevated temperature on properties of concretes.” Fire Saf. J. 42 (8): 516–522. https://doi.org/10.1016/j.firesaf.2007.01.003.
ASTM. 2012. Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. ASTM C1202. West Conshohocken, PA: ASTM.
ASTM. 1997. Standard test method for resistance of concrete to rapid freezing and thawing. ASTM C666. West Conshohocken, PA: ASTM.
Barra de Oliveira, M., and E. Vázquez. 1996. “The influence of retained moisture in aggregates from recycling on the properties of new hardened concrete.” Waste Manage. 16 (1–3): 113–117. https://doi.org/10.1016/S0956-053X(96)00033-5.
Barragán, B., A. Di Maio, G. Giaccio, L. Traversa, and R. Zerbino. 1999. “Hormigones elaborados con distintos tipos de agregado expuestos a altas temperaturas.” [In Spanish.] Cienc. Tecnol. Hormigón 7: 27–41.
Barragán, B., A. Di Maio, G. Giaccio, L. Traversa, and R. Zerbino. 2000. “Effects of high temperature on residual mechanical and transport properties of concrete.” In Proc., 5th CANMET/ACI Int. Conf. on Durability of Concrete, 983–1000. Farmington Hills, MI: American Concrete Institute.
Barreto Santos, M., J. de Brito, and A. Santos Silva. 2009. “Métodos de evaluación de las reacciones álcali-sílice en hormigones con áridos reciclados.” Rev. Ing. Constr. 24 (2): 141–152. https://doi.org/10.4067/S0718-50732009000200002.
Bazant, Z. P., and M. F. Kaplan. 1996. Concrete at high temperatures: Materials properties and mathematical models. Essex, UK: Logman House.
Berndt, M. L. 2009. “Properties of sustainable concrete containing fly-ash, slag and recycled concrete aggregate.” Constr. Build. Mater. 23 (7): 2606–2613. https://doi.org/10.1016/j.conbuildmat.2009.02.011.
Bulatović, V., M. Melešev, M. Radeka, V. Radonjanin, and I. Lukić. 2017. “Evaluation of sulfate resistance of concrete with recycled and natural aggregates. Constr. Build. Mater. 152: 614–631.
CEN (European Committee for Standardization). 2002. Aggregates for concrete. BS EN 12620. Brussels, Belgium: CEN.
Chindaprasirt, P., C. Chotithanorm, H. T. Cao, and V. Sirivivatnanon. 2007. “Influence of fly ash fineness on the chloride penetration of concrete.” Constr. Build. Mater. 21 (2): 356–361. https://doi.org/10.1016/j.conbuildmat.2005.08.010.
Collepardi, M. 2003. “A state-of-the-art review on delayed ettringite attack on concrete.” Cem. Concr. Compos. 25 (4–5): 401–407. https://doi.org/10.1016/S0958-9465(02)00080-X.
Collepardi, M., A. Marcialis, and R. Turriziani. 1972. “Penetration of chloride ions into cement pastes and concretes.” J. Am. Ceram. Soc. 55 (10): 534–535. https://doi.org/10.1111/j.1151-2916.1972.tb13424.x.
Corinaldesi, V., and G. Moriconi. 2009. “Influence of mineral additions on the performance of 100% recycled aggregate concrete.” Constr. Build. Mater. 23 (8): 2869–2876. https://doi.org/10.1016/j.conbuildmat.2009.02.004.
Corinaldesi, V., and G. Moriconi. 2010. “Recycling of rubble from building demolition for low-shrinkage concretes.” Waste Manage. 30 (4): 655–659. https://doi.org/10.1016/j.wasman.2009.11.026.
Corral-Higuera, R., S. P. Arredondo-Rea, M. A. Neri-Flores, J. M. Gómez-Soberón, F. Almeraya-Calderón, J. H. Castorena-González, and J. L. Almaral-Sánchez. 2011. “Sulfate attack and reinforcement corrosion in concrete with recycled concrete aggregates and supplementary cementing materials.” Int. J. Electrochem. Sci. 6 (3): 613–621.
CSA (Canadian Standards Association). 2014a. Potential expansivity of aggregates (procedure for length change due to alkali-aggregate reaction in concrete prisms at 38°C). CAN/CSA A23.2-14A. Rexdale, Canada: CSA.
CSA (Canadian Standards Association). 2014b. Standard practice to identify degree of alkali-reactivity of aggregates and to identify measures to avoid deleterious expansion in concrete. CAN/CSA A23.2-27A. Rexdale, Canada: CSA.
De Weerdt, K., D. Orsáková, and M. R. Geiker. 2014. “The impact of sulfate and magnesium on chloride binding in portland cement paste.” Cem. Concr. Res. 65 (Nov): 30–40. https://doi.org/10.1016/j.cemconres.2014.07.007.
Debieb, F., L. Courard, S. Kenai, and R. Degeimbre. 2010. “Mechanical and durability properties of concrete using contaminated recycled aggregates.” Cem. Concr. Compos. 32 (6): 421–426. https://doi.org/10.1016/j.cemconcomp.2010.03.004.
Dehwah, H. A. F. 2007. “Effect of sulfate concentration and associated cation type on concrete deterioration and morphological changes in cement hydrates.” Constr. Build. Mater. 21 (1): 29–39. https://doi.org/10.1016/j.conbuildmat.2005.07.010.
Denoël, J. F. 2007. Fire safety and concrete structures. Edited by J.-P. Jacobs, 90. Brussels, Belgium: Federation of Belgian Cement Industry.
Dhir, R. K., M. C. Limbachiya, and T. Leelawat. 1999. “Suitability of recycled concrete aggregate for use in BS 5328 designated mixes.” Proc. Inst. Civ. Eng. Struct. Build. 134 (3): 257–274. https://doi.org/10.1680/istbu.1999.31568.
Di Maio, A. A., G. Giaccio, and R. Zerbino. 2002. “Hormigones con agregados reciclados.” [In Spanish.] Cienc. Tecnol. Hormigón 9: 5–10.
Di Maio, A. A., C. J. Zega, and L. P. Traversa. 2005. “Estimation of compressive strength of recycled concretes with the ultrasonic method.” J. ASTM Int. 2 (5): 1–8. https://doi.org/10.1520/JAI12849.
DIN (Deutsches Institut für Normung). 2002. Aggregates for mortar and concrete, Part 100: Recycled aggregates. DIN 4226-100. Berlin: DIN.
Domingo-Cabo, A., C. Lázaro, F. López-Gayarre, M. A. Serrano-López, P. Serna, and J. O. Castaño-Tabares. 2009. “Creep and shrinkage of recycled aggregate concrete.” Constr. Build. Mater. 23 (7): 2545–2553. https://doi.org/10.1016/j.conbuildmat.2009.02.018.
EHE (Hormigón Estructural). 2008. Instrucción de Hormigón Estructural. Anejo 15, Recomendaciones para la utilización de hormigones reciclados. Gobierno de España: Ministerio de Fomento.
Etxeberria, M., and E. Vázquez. 2010. “Reacción álcali-sílice en el hormigón debido al mortero adherido del árido reciclado.” Materiales Construcción 60 (297): 47–58. https://doi.org/10.3989/mc.2010.46508.
Etxeberria, M., E. Vázquez, A. Marí, and M. Barra. 2007. “Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete.” Cem. Concr. Res. 37 (5): 735–742. https://doi.org/10.1016/j.cemconres.2007.02.002.
Etxeberria Larrañaga, M. 2004. “Experimental study on microstructure and structural behaviour of recycled aggregate concrete.” Ph.D. thesis, Departamento de Ingeniería de la Construcción, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Cataluña.
Fathifazl, G., A. G. Razaqpur, O. B. Isgor, A. Abbas, B. Fournier, and S. Foo. 2011. “Creep and drying shrinkage characteristics of concrete produced with coarse recycled concrete aggregate.” Cem. Concr. Compos. 33 (10): 1026–1037. https://doi.org/10.1016/j.cemconcomp.2011.08.004.
fib (International Federation for Structural Concrete). 2002. Fire management, maintenance and strengthening of concrete structures. Lausanne, Switzerland: fib.
Gastaldini, A. L. G., G. C. Isaia, N. S. Gomes, and J. E. K. Sperb. 2007. “Chloride penetration and carbonation in concrete with rice husk ash and chemical activators.” Cem. Concr. Compos. 29 (3): 176–180. https://doi.org/10.1016/j.cemconcomp.2006.11.010.
Gokce, A., S. Nagataki, T. Saeki, and M. Hisada. 2004. “Freezing and thawing resistance of air entrained concrete incorporating recycled coarse aggregates: The role of air content in demolished concrete.” Cem. Concr. Res. 34 (5): 799–806. https://doi.org/10.1016/j.cemconres.2003.09.014.
Gokce, A., S. Nagataki, T. Saeki, and M. Hisada. 2011. “Identification of frost-susceptible recycled concrete aggregates for durability of concrete.” Constr. Build. Mater. 25 (5): 2426–2431. https://doi.org/10.1016/j.conbuildmat.2010.11.054.
Gomes, M., and J. de Brito. 2009. “Structural concrete with incorporation of coarse recycled concrete and rendered ceramics aggregates: Durability performance.” Mater. Struct. 42 (5): 663–675. https://doi.org/10.1617/s11527-008-9411-9.
Gómez, J. M., L. Agulló, and E. Vázquez. 2001. “Cualidades físicas y mecánicas de los agregados reciclados de concreto.” [In Spanish,] Construcción Tecnol. 34 (5): 799–806.
Gómez-Soberón, J. M. V. 2002. “Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study.” Cem. Concr. Res. 32 (8): 1301–1311. https://doi.org/10.1016/S0008-8846(02)00795-0.
Gomez-Soberon, J. M. V. 2003. “Relationship between gas adsorption and the shrinkage and creep of recycled aggregate concrete.” Cem. Concr. Aggregates 25 (2): 42–48.
Gonçalves, A., A. Esteves, and M. Vieira. 2004. “Influence of recycled concrete aggregates on concrete durability.” In Proc., Int. RILEM Conf. on the Use of Recycled Materials in Building and Structures, edited by E. Vázquez, C. F. Hendriks, and G. M. T. Janssen, 554–562. Bagneux, France: RILEM Publications S.A.R.L.
Gupta, A., S. Ghosh, and S. Mandal. 2012. “Coated recycled aggregate concrete exposed to elevated temperature.” Global J. Res. Eng. Civ. Struct. Eng. 12 (3): 26–31.
Hansen, T. C. 1986. “Recycled aggregates and recycled aggregate concrete. Second State of the Art. Report Developments 1945–1985.” Mater. Struct. 19 (3): 201–246. https://doi.org/10.1007/BF02472036.
Hansen, T. C., and H. Narud. 1983. “Strength of recycled concrete made from crushed concrete coarse aggregate.” Concr. Int. 5 (1): 79–83.
Husem, M. 2006. “The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete.” Fire Saf. J. 41 (2): 155–163. https://doi.org/10.1016/j.firesaf.2005.12.002.
Hwang, J. P., H. B. Shim, S. Lim, and K. Y. Ann. 2013. “Enhancing the durability properties of concrete containing recycled aggregate by the use of pozzolanic materials.” KSCE J. Civ. Eng. 17 (1): 155–163. https://doi.org/10.1007/s12205-013-1245-5.
Irassar, E. F., O. R. Batic, A. Di Maio, and J. M. Ponce. 2006. “Sulfate resistance of concrete containing high volume of mineral admixtures.” In Vol. 234 of Proc., 7th CANMET/ACI Int. Conf. on Durability of Concrete, Montreal SP-ACI, 589–606. Farmington Hills, MI: American Concrete Institute.
Irassar, E. F., A. A. Di Maio, and O. R. Batic. 2010. “Deterioro del hormigón por cristalización de sales.” [In Spanish.] In Proc., VI Congreso Internacional sobre Patología y Recuperación de Estructuras (CINPAR). Buenos Aires, Argentina: edUTecNe.
Johnson, R., and M. H. Shehata. 2016. “The efficacy of accelerated test methods to evaluate Alkali Silica Reactivity of recycled concrete aggregates.” Constr. Build. Mater. 112 (Jun): 518–528. https://doi.org/10.1016/j.conbuildmat.2016.02.155.
Khoury, G. A. 2000. “Effect of fire on concrete and concrete structures.” Prog. Struct. Mater. Eng. 2 (4): 429–447. https://doi.org/10.1002/pse.51.
Kim, H., and D. Bentz. 2008. “Internal curing with crushed returned concrete aggregates for high performance concrete.” In Concrete Technology Forum: Focus on Sustainable Development, 12. Denver: National Ready Mixed Concrete Association.
Konno, K., Y. Sato, O. Katsura, and M. Kumagai. 2002. “Influence of absorption of coarse aggregate on frost resistance and strength of recycled concrete.” In Proc., 1st fib Congress ‘Concrete structures in the 21st century’, 139–144. Osaka, Japan: Congress Secretariat, Japan Prestressed Concrete Engineering Association.
Kou, S. C., and C. S. Poon. 2012. “Enhancing the durability properties of concrete prepared with coarse recycled aggregate.” Constr. Build. Mater. 35 (Oct): 69–76. https://doi.org/10.1016/j.conbuildmat.2012.02.032.
Kou, S. C., and C. S. Poon. 2013. “Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash.” Cem. Concr. Compos. 37 (Mar): 12–19. https://doi.org/10.1016/j.cemconcomp.2012.12.011.
Kou, S. C., C. S. Poon, and M. Etxeberria. 2014. “Residue strength, water absorption and pore size distributions of recycled aggregate concrete after exposure to elevated temperatures.” Cem. Concr. Compos. 53 (Oct): 73–82. https://doi.org/10.1016/j.cemconcomp.2014.06.001.
Kovler, K., and O. M. Jensen. 2007. General concept and terminology. Internal curing of concrete. Bagneux, France: RILEM Publications S.A.R.L.
Kwan, W. H., M. Ramli, K. J. Kam, and M. Z. Sulieman. 2012. “Influence of the amount of recycled coarse aggregate in concrete design and durability properties.” Constr. Build. Mater. 26 (1): 565–573. https://doi.org/10.1016/j.conbuildmat.2011.06.059.
Lamond, J. F., R. L. Campbell, A. Giraldi, N. J. T. Jenkins, T. R. Campbell, W. Halczak, R. Miller, J. A. Cazares, H. C. Hale, and P. T. Seabrook. 2002. “Removal and reuse of hardened concrete.”. Farmington Hills, MI: American Concrete Institute.
Limbachiya, M. C., T. Leelawat, and R. K. Dhir. 2000. “Use of recycled concrete aggregate in high-strength concrete.” Mater. Struct. 33 (9): 574–580. https://doi.org/10.1007/BF02480538.
Malhotra, H. L. 1956. “The effect of temperature on the compressive strength of concrete.” Mag. Concr. Res. 8 (23): 85–94. https://doi.org/10.1680/macr.1956.8.23.85.
Mefteh, H., O. Kebaïli, H. Oucief, L. Berredjem, and N. Arabi. 2013. “Influence of moisture conditioning of recycled aggregates on the properties of fresh and hardened concrete.” J. Cleaner Prod. 54 (Sep): 282–288. https://doi.org/10.1016/j.jclepro.2013.05.009.
Mehta, P. K., and P. J. M. Monteiro. 2006. Concrete: Microstructure, properties, and materials. 3rd ed., 660. New York: McGraw-Hill.
Mindess, S., and J. F. Young. 1981. Concrete, 671. Englewood Cliffs, NJ: Prentice-Hall.
Monosi, S., G. Moriconi, I. Alverà, and M. Collepardi. 1989. “Effect of water/cement ratio and curing time on chloride penetration into concrete.” Mater. Eng. 1 (2): 483–489.
Nawy, E. G. 2008. Concrete construction engineering handbook. 2nd ed., 1560. Englewood Cliffs, NJ: CRC Press.
Netinger, I., I. Kesegic, and I. Guljas. 2011. “The effect of high temperatures on the mechanical properties of concrete made with different types of aggregates.” Fire Saf. J. 46 (7): 425–430. https://doi.org/10.1016/j.firesaf.2011.07.002.
Neville, A. 1995. “Chloride attack of reinforced concrete: An overview.” Mater. Struct. 28 (2): 63–70. https://doi.org/10.1007/BF02473172.
Neville, A. 2004. “The confused world of sulfate attack on concrete.” Cem. Concr. Res. 34 (8): 1275–1296. https://doi.org/10.1016/j.cemconres.2004.04.004.
Nixon, P. J. 1978. “Recycled concrete as an aggregate for concrete—A review.” Mater. Constr. 11 (5): 371–378. https://doi.org/10.1007/BF02473878.
Olorunsogo, F. T., and N. Padayachee. 2002. “Performance of recycled aggregate concrete monitored by durability indexes.” Cem. Concr. Res. 32 (2): 179–185. https://doi.org/10.1016/S0008-8846(01)00653-6.
Otsuki, N., S. Miyazato, and W. Yodsudjai. 2003. “Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete.” J. Mater. Civ. Eng. 15 (5): 443–451. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(443).
Padmini, A. K., K. Ramamurthy, and M. S. Mathews. 2009. “Influence of parent concrete on the properties of recycled aggregate concrete.” Constr. Build. Mater. 23 (2): 829–836. https://doi.org/10.1016/j.conbuildmat.2008.03.006.
Poon, C. S., Z. H. Shui, L. Lam, H. Fok, and S. C. Kou. 2004. “Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of hardened concrete.” Cem. Concr. Res. 34 (1): 31–36. https://doi.org/10.1016/S0008-8846(03)00186-8.
Rasheeduzzafar, K. A. 1984. “Recycled concrete—A source for new aggregate.” Cem. Concr. Aggregates 6 (1): 17–27. https://doi.org/10.1520/CCA10349J.
Richardson, A., K. Coventry, and J. Bacon. 2011. “Freeze/thaw durability of concrete with recycled demolition aggregate compared to virgin aggregate concrete.” J. Cleaner Prod. 19 (2–3): 272–277. https://doi.org/10.1016/j.jclepro.2010.09.014.
Sadati, S., and K. H. Khayat. 2017. “Restrained shrinkage cracking of recycled aggregate concrete.” Mater. Struct. 50 (4): 206. https://doi.org/10.1617/s11527-017-1074-y.
Saetta, A. V., R. V. Scotta, and R. V. Vitaliani. 1993. “Analysis of chloride diffusion into partially saturated concrete.” ACI Mater. J. 90 (5): 441–451. https://doi.org/10.14359/3874.
Sánchez de Juan, M. 2004. “Estudio sobre la utilización de árido reciclado para la fabricación de Hormigón Estructural.” Ph.D. thesis, Departamento de Ingeniería Civil, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos.
Sánchez de Juan, M., and P. Alaejos Gutiérrez. 2009. “Study on the influence of attached mortar content on the properties of recycled concrete aggregate.” Constr. Build. Mater. 23 (2): 872–877. https://doi.org/10.1016/j.conbuildmat.2008.04.012.
Santhanam, M., M. D. Cohen, and J. Olek. 2001. “Sulfate attack research—Whither now?” Cem. Concr. Res. 31 (6): 845–851. https://doi.org/10.1016/S0008-8846(01)00510-5.
Santillán, L. R., Y. A. Villagrán Zaccardi, D. E. Benito, and C. J. Zega. 2016. “Sulfate ingress in recycled concrete immersed in sodium sulfate solution for 10 years.” In Proc., Workshop on External Sulfate Attack. Lisbon, Portugal: Laboratório Nacional de Engenharia Civil.
Saravanakumar, P., and G. Dhinakaran. 2014. “Durability aspects of HVFA-based recycled aggregate concrete.” Mag. Concr. Res. 66 (4): 186–195. https://doi.org/10.1680/macr.13.00200.
Shayan, A., and A. Xu. 2003. “Performance and properties of structural concrete made with recycled concrete aggregate.” ACI Mater. J. 100 (5): 371–380. https://doi.org/10.14359/12812.
Shehata, M. H., C. Christidis, W. Mikhaiel, C. Rogers, and M. Lachemi. 2010. “Reactivity of reclaimed concrete aggregate produced from concrete affected by alkali–silica reaction.” Cem. Concr. Res. 40 (4): 575–582. https://doi.org/10.1016/j.cemconres.2009.08.008.
Shrimali, A., D. S. Chauhan, T. Gupta, and R. K. Sharma. 2017. “Behavior of concrete utilizing recycled aggregate—A review.” Int. J. Eng. Res. Appl. 7 (1): 72–79. https://doi.org/10.9790/9622-0701057279.
Silva, R. V., J. de Brito, and R. K. Dhir. 2015. “Prediction of the shrinkage behavior of recycled aggregate concrete: A review.” Constr. Build. Mater. 77 (Feb): 327–339. https://doi.org/10.1016/j.conbuildmat.2014.12.102.
Soares, D., J. de Brito, J. Ferreira, and J. Pacheco. 2014. “Use of coarse recycled aggregates from precast concrete rejects: Mechanical and durability performance.” Constr. Build. Mater. 71 (Nov): 263–272. https://doi.org/10.1016/j.conbuildmat.2014.08.034.
Somna, R., C. Jaturapitakkul, and A. M. Amde. 2012. “Effect of ground fly ash and ground bagasse ash on the durability of recycled aggregate concrete.” Cem. Concr. Compos. 34 (7): 848–854. https://doi.org/10.1016/j.cemconcomp.2012.03.003.
Sri Ravindrarajah, R., and C. T. Tam. 1985. “Properties of concrete made with crushed concrete as coarse aggregate.” Mag. Concr. Res. 37 (130): 29–38. https://doi.org/10.1680/macr.1985.37.130.29.
Tabsh, S. W., and A. S. Abdelfatah. 2009. “Influence of recycled concrete aggregates on strength properties of concrete.” Constr. Build. Mater. 23 (2): 1163–1167. https://doi.org/10.1016/j.conbuildmat.2008.06.007.
Tanaka, K., K. Yada, I. Maruyama, R. Sato, and K. Kawai. 2004. “Study on corrosion of reinforcing bar in recycled concrete.” In Vol. 2 of Proc., Int. RILEM Conf. on the Use of Recycled Materials in Building and Structures, 643–650. Bagneux, France: RILEM Publications S.A.R.L.
Topcu, I. B., and S. Sengel. 2004. “Properties of concretes produced with waste concrete aggregate.” Cem. Concr. Res. 34 (8): 1307–1312. https://doi.org/10.1016/j.cemconres.2003.12.019.
Toumi, B., M. Resheidat, Z. Guemmadi, and H. Chabil. 2009. “Coupled effect of high temperature and heating time on the residual strength of normal and high-strength concretes.” Jordan J. Civ. Eng. 3 (4): 322–330.
Vieira, J. P. B., J. R. Correia, and J. de Brito. 2011. “Post-fire residual mechanical properties of concrete made with recycled concrete coarse aggregates.” Cem. Concr. Res. 41 (5): 533–541. https://doi.org/10.1016/j.cemconres.2011.02.002.
Villagrán Zaccardi, Y. A., and C. Matiasich. 2004. “Capacidad de fijación y adsorción de cloruros en morteros elaborados con distintos cementos.” Cienc. Tecnol. Hormigón 11: 59–72.
Villagrán Zaccardi, Y. A., C. J. Zega, and A. A. Di Maio. 2008. “Chloride penetration and binding in recycled concrete.” J. Mater. Civ. Eng. 20 (6): 449–455. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:6(449).
Xiao, J. Z., J. B. Li, and Ch Zhang. 2006. “On relationships between the mechanical properties of recycled aggregate concrete: An overview.” Mater. Struct. 39 (6): 655–664. https://doi.org/10.1617/s11527-006-9093-0.
Xiao, J. Z., and C. Zhang. 2007. “Fire damage and residual strengths of recycled aggregate concrete.” Key Eng. Mater. 348–349: 937–940. https://doi.org/10.4028/www.scientific.net/KEM.348-349.937.
Zaharieva, R., F. Buyle-Bodyn, and E. Wirquin. 2004. “Frost resistance of recycled aggregate concrete.” Cem. Concr. Res. 34 (10): 1927–1932. https://doi.org/10.1016/j.cemconres.2004.02.025.
Zega, C. J., G. S. Coelho Dos Santos, A. Pittori, and A. A. Di Maio. 2014. “Efecto del contenido de humedad del agregado grueso reciclado sobre la resistencia a compresión.” In Proc., VI Congreso Internacional y 20° Reunión Técnica de la AATH, 469–476. Buenos Aires, Argentina: Argentina Association of Concrete Technology.
Zega, C. J., G. S. Coelho Dos Santos, Y. A. Villagrán Zaccardi, and A. A. Di Maio. 2016a. “Performance of recycled concretes exposed to sulfate soil for 10 years.” Constr. Build. Mater. 102 (Jan): 714–721. https://doi.org/10.1016/j.conbuildmat.2015.11.025.
Zega, C. J., and A. Di Maio. 2003. “Influencia de las características de los agregados reciclados en la elaboración de hormigones.” In Proc., XV Reunión Técnica de la AATH y Seminario de Hormigones Especiales. Buenos Aires, Argentina: Argentina Association of Concrete Technology.
Zega, C. J., and A. A. Di Maio. 2006. “Recycled concrete exposed to high temperatures.” Mag. Concr. Res. 58 (10): 675–682. https://doi.org/10.1680/macr.2006.58.10.675.
Zega, C. J., and A. A. Di Maio. 2007. “Efecto del agregado grueso reciclado sobre las propiedades del hormigón.” Bol. Téc. Inst. Mater. Modelos Estructurales IMME 45 (2): 1–11.
Zega, C. J., and A. A. Di Maio. 2009. “Recycled concrete made with different natural coarse aggregates exposed to high temperature.” Constr. Build. Mater. 23 (5): 2047–2052. https://doi.org/10.1016/j.conbuildmat.2008.08.017.
Zega, C. J., D. D. Falcone, and A. A. Di Maio. 2016b. “Desarrollo de la reacción álcali-sílice en hormigones con agregados reciclados.” In Proc., VII Congreso Internacional y 21° Reunión Técnica de la AATH, 365–372. Buenos Aires, Argentina: Argentina Association of Concrete Technology.
Zega, C. J., V. L. Taus, Z. Y. A. Villagrán, and A. A. Di Maio. 2005. “Comportamiento físico-mecánico de hormigones sometidos a reciclados sucesivos.” In Proc., Simposio fib El Hormigón Estructural y el Transcurso del Tiempo, edited by A. A. Di Maio and C. J. Zega, 761–768. La Plata, Argentina: Laboratorio de Entrenamiento Multidisciplinario para la Investigación Tecnológica.
Zega, C. J., Y. A. Villagrán Zaccardi, and A. A. Di Maio. 2010. “Effect of natural coarse aggregate type on the physical and mechanical properties of recycled coarse aggregates.” Mater. Struct. 43 (1–2): 195–202. https://doi.org/10.1617/s11527-009-9480-4.
Zega, C. J., Y. A. Villagrán Zaccardi, and A. A. Di Maio. 2015. “Chloride diffusion in recycled concretes made with different types of natural coarse aggregates.” In Proc., Int. Conf. on Sustainable Structural Concrete, edited by Y. Villagrán Zaccardi, C. Zega, and M. C. Torrijos, 393–402. La Plata, Argentina: Laboratorio de Entrenamiento Multidisciplinario para la Investigación Tecnológica.
Zoldners, N. G. 1971. “Thermal properties of concrete under sustained elevated temperatures.” ACI Spec. Publ. 25: 1–32.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 32Issue 7July 2020

History

Published online: Apr 28, 2020
Published in print: Jul 1, 2020
Discussion open until: Sep 28, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Laboratorio de Entrenamiento Multidisciplinario para la Investigación Tecnológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina 1900 (corresponding author). ORCID: https://orcid.org/0000-0002-9199-9176. Email: [email protected]; [email protected]
Laboratorio de Entrenamiento Multidisciplinario para la Investigación Tecnológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina 1900. ORCID: https://orcid.org/0000-0002-9040-4417. Email: [email protected]
María E. Sosa [email protected]
Departamento de Ingeniería Civil—Laboratorio de Entrenamiento Multidisciplinario para la Investigación Tecnológica (LEMaC, Centro de Investigaciones Viales), Facultad Regional La Plata, Universidad Tecnológica Nacional, La Plata, Argentina 1900. Email: [email protected]
Laboratorio de Entrenamiento Multidisciplinario para la Investigación Tecnológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina 1900. ORCID: https://orcid.org/0000-0002-0259-7213. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share