Technical Papers
Apr 28, 2020

Experimental Evaluation of Aging Characteristics of EPDM as a Sealant for Undersea Shield Tunnels

Publication: Journal of Materials in Civil Engineering
Volume 32, Issue 7

Abstract

The degradation mechanism of ethylene–propylene–diene monomer (EPDM), when used as a sealant material for shield tunnels, must be known to assess of the service life of sealant gaskets. This paper presents a series of experimental investigations on the degradation performance of EPDM due to aging under artificial seawater and hot air conditions. The mechanical properties of EPDM (such as hardness, tensile strength, and elongation at break) are investigated first. Then, microchemical analyses, such as scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR), are conducted to investigate the variations in the microstructure during aging. The tensile strength and elongation at break under hot air or artificial seawater conditions at different temperatures decrease with aging time, whereas the hardness of EPDM under hot air or artificial seawater conditions increases with aging time. However, at 25°C, the hardness decreases gradually with aging time under artificial seawater conditions. The microscopic results show that the microstructure changes can be attributed to the fracture degradation of the molecular chains, oxidation reactions, and the formation of CO/COC.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The research work described herein was funded by the National Basic Research Program of China (973 Program: 2015CB057806). This financial support is gratefully acknowledged.

References

Aromaa, J., and O. Forsén. 2016. “Factors affecting corrosion in Gulf of Finland brackish water.” Int. J. Electrochem. 2016: 9. https://doi.org/10.1155/2016/3720280.
ASTM. 2005. Standard test method for rubber property. ASTM D2240. West Conshohocken, PA: ASTM.
ASTM. 2006. Standard test methods for vulcanized rubber and thermoplastic elastomers-tension. ASTM D412. West Conshohocken, PA: ASTM.
ASTM. 2014a. Standard practice for rubber—Standard condition for testing. ASTM D1349. West Conshohocken, PA: ASTM.
ASTM. 2014b. Standard test methods for compositional analysis by thermogravimetry. ASTM E1131-08. West Conshohocken, PA: ASTM.
Avalos, B. F., P. C. Mendoza, and C. J. Ortiz. 2017. “Effect of the ethylene content on the properties m-polypropylene/EPDM blends.” MOJ Polym. Sci. 1 (1): 5–9. https://doi.org/10.15406/mojps.2017.01.00002.
Celina, M., K. T. Gillen, and R. A. Assink. 2005. “Accelerated aging and lifetime prediction: Review of non-arrhenius behaviour due to two competing processes.” Polym. Degrad. Stab. 90 (3): 395–404. https://doi.org/10.1016/j.polymdegradstab.2005.05.004.
Chai, J. C., J. S. L. Shen, and D. J. Yuan. 2018. “Mechanism of tunneling-induced cave-in of a busy road in Fukuoka city, Japan.” Undergr. Space 3 (2): 140–149. https://doi.org/10.1016/j.undsp.2018.01.003.
Cheng, W. C., J. C. Ni, A. Arulrajah, and H. W. Huang. 2018a. “A simple approach for characterising tunnel bore conditions based upon pipe-jacking data.” Tunn. Undergr. Sp. Tech. 71 (Jan): 494–504. https://doi.org/10.1016/j.tust.2017.10.002.
Cheng, W. C., J. C. Ni, and S. L. Shen. 2017. “Experimental and analytical modeling of shield segment under cyclic loading.” Int. J. Geomech. 17 (6): 04016146. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000810.
Cheng, W. C., Z. P. Song, W. Tian, and Z. F. Wang. 2018b. “Shield tunnel uplift and deformation characterisation: A case study from Zhengzhou metro.” Tunn. Undergr. Sp. Tech. 79 (Sep): 83–95. https://doi.org/10.1016/j.tust.2018.05.002.
Cheng, W. C., L. Wang, Z. F. Xue, J. C. Ni, M. M. Rahman, and A. Arulrajah. 2019. “Lubrication performance of pipejacking in soft alluvial deposits.” Tunn. Undergr. Sp. Tech. 91 (Sep): 102991. https://doi.org/10.1016/j.tust.2019.102991.
Colombani, J., A. Sidi, J. F. Larché, and A. Rivaton. 2018. “Investigation of radio-oxidative ageing conditions on EVA/EPDM blends: Understanding the limitations posed as to representing long term in-use exposures.” Nucl. Instrum. Methods Phys. Res., B 436 (Dec): 130–140. https://doi.org/10.1016/j.nimb.2018.05.036.
Dakin, T. W. 1948. “Electrical insulation deterioration treated as a chemical rate phenomenon.” Am. Inst. Electr. Eng. Trans. 67 (1): 113–122. https://doi.org/10.1109/T-AIEE.1948.5059649.
Davies, P., and G. Evrard. 2007. “Accelerated ageing of polyurethanes for marine applications.” Polym. Degrad. Stab. 92 (8): 1455–1464. https://doi.org/10.1016/j.polymdegradstab.2007.05.016.
Ding, W. Q., C. Gong, K. Mosalam, and K. Soga. 2017. “Development and application of the integrated sealant test apparatus for sealing gaskets in tunnel segmental joints.” Tunn. Undergr. Sp. Tech. 63 (Mar): 54–68. https://doi.org/10.1016/j.tust.2016.12.008.
Elbaz, K., S. L. Shen, W. C. Cheng, and A. Arulrajah. 2018. “Cutter-disc consumption during earth pressure balance tunnelling in mixed strata.” Geotech. Eng. ICE Proc. 171 (4): 363–376. https://doi.org/10.1680/jgeen.17.00117.
Elbaz, K., S. L. Shen, W. J. Sun, Z. Y. Yin, and A. N. Zhou. 2020. “Prediction model of shield performance during tunneling via incorporating improved Particle Swarm Optimization into ANFIS.” IEEE Access 8 (1): 39659–39671. https://doi.org/10.1109/ACCESS.2020.2974058.
Garcia, E. M., H. A. Taroco, R. Z. Domingues, T. Matencio, and S. L. Gonçalves. 2016. “Electrochemical recycling of cell phone li-ion batteries: Application as corrosion protector of aisi 430 stainless steel in artificial seawater.” Ionics 22 (5): 735–741. https://doi.org/10.1007/s11581-016-1691-4.
Ghosh, P., and A. Chakrabarti. 2000. “Conducting carbon black filled EPDM vulcanizates: Assessment of dependence of physical and mechanical properties and conducting character on variation of filler loading.” Eur. Polym. J. 36 (5): 1043–1054. https://doi.org/10.1016/S0014-3057(99)00157-3.
Giurginca, M., T. Zaharescu, and A. Meghea. 1995. “Degradation of ethylene-propylene elastomers in the presence of ozone.” Polym. Degrad. Stab. 50 (1): 45–48. https://doi.org/10.1016/0141-3910(95)00108-X.
Haseeb, A., T. S. Jun, and M. A. Fazal. 2011. “Degradation of physical properties of different elastomers upon exposure to palm biodiesel.” Energy 36 (3): 1814–1819. https://doi.org/10.1016/j.energy.2010.12.023.
Hong, P. I., L. W. He, and Y. Yang. 2015. “The aging behavior of EPDM under stress-thermal circumstance in air.” [In Chinese.] Synth. Mater. Aging Appl. 44 (5): 1–4.
Hsuan, Y. G., and R. M. Koerner. 2005. “Aging of geomembranes used in hydraulic structures.” Geotech. Spec. Publ. 130: 1–7. https://doi.org/10.1061/40782(161)40.
Jacob, C., A. K. Bhowmick, P. P. De, and S. K. De. 2002. “Studies on ground EPDM vulcanisate as filler in window seal formulation.” Plast. Rubber Compos. 31 (5): 212–219. https://doi.org/10.1179/146580102225003029.
Kömmling, A., M. Jaunich, P. Pourmand, D. Wolff, and U. W. Gedde. 2017. “Influence of ageing on sealability of elastomeric O-rings.” Macromol. Symp. 373 (1): 1600157. https://doi.org/10.1002/masy.201600157.
Le Gac, P. Y., D. Choqueuse, M. Paris, G. Recher, C. Zimmer, and D. Melot. 2013. “Durability of polydicyclopentadiene under high temperature, high pressure and seawater (offshore oil production conditions).” Polym. Degrad. Stab. 98 (3): 809–817. https://doi.org/10.1016/j.polymdegradstab.2012.12.023.
Le Saux, V., P. Y. Le Gac, Y. Marco, and S. Calloch. 2014. “Limits in the validity of arrhenius predictions for field ageing of a silica filled polychloroprene in a marine environment.” Polym. Degrad. Stab. 99 (Jan): 254–261. https://doi.org/10.1016/j.polymdegradstab.2013.10.027.
Liu, X. X., S. L. Shen, Y. S. Xu, and Z. Y. Yin. 2018. “Analytical approach for time-dependent groundwater inflow into shield tunnel face in confined aquifer.” Int. J. Numer. Anal. Methods Geomech. 42 (4): 655–673. https://doi.org/10.1002/nag.2760.
Liu, X. X., S. L. Shen, A. N. Zhou, and Y. S. Xu. 2019. “Evaluation of foam conditioning effect on groundwater inflow at tunnel cutting face.” Int. J. Numer. Anal. Methods Geomech. 43 (2): 463–481. https://doi.org/10.1002/nag.2871.
Lyu, H. M., S. L. Shen, A. Zhou, and J. Yang. 2020a. “Risk assessment of mega-city infrastructures related to land subsidence using improved trapezoidal FAHP.” Sci. Total Environ. 717 (2020): 135310. https://doi.org/10.1016/j.scitotenv.2019.135310.
Lyu, H. M., W. J. Sun, S. L. Shen, and A. N. Zhou. 2020b. “Risk assessment using a new consulting process in fuzzy AHP.” J. Constr. Eng. Manage. 146 (3): 04019112. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001757.
Marzieh, I., O. M. Saeed, and A. Ali. 2017. “Effects of peroxide and phenolic cure systems on characteristics of the filled ethylene–propylene–diene monomer rubber (EPDM).” J. Appl. Polym. Sci. 135 (21): 46213. https://doi.org/10.1002/app.46213.
Mitra, S., A. Ghanbari-Siahkali, P. Kingshott, H. K. Rehmeier, H. Abildgaard, and K. Almdal. 2006. “Chemical degradation of crosslinked ethylene-propylene-diene rubber in an acidic environment.” Part I. Eff. Accelerated Sulphur Crosslinks, Polym. Degrad. Stab. 91 (1): 69–80. https://doi.org/10.1016/j.polymdegradstab.2005.04.032.
MOC (Ministry of Construction of China). 2008. The standard for test method of rubber, vulcanized or thermoplastic—Determination of indentation hardness. Part 1: Duromerer method—Shore hardness. GB/T531.1. Beijing: MOC.
MOC (Ministry of Construction of China). 2009. The standard for test method of rubber, vulcanized or thermoplastic—Determination of tensile stress-strain properties. GB/528. Beijing: MOC.
MOC (Ministry of Construction of China). 2014a. The standard for test method of rubber and rubber products—Determination of the composition of vulcanizates and uncured compounds by thermogravimetry—Part 1: Butadiene, ethylene-propylene copolymer and terpolymer, isobutene-isoprene, isoprene and styrene-butadiene rubbers. GB/T14837. Beijing: MOC.
MOC (Ministry of Construction of China). 2014b. The standard for test method of rubber, vulcanized—Test method of deterioration by heat and oxygen-tube tester. GB/T13939. Beijing: MOC.
Nabil, H., H. Ismail, and A. R. Azura. 2013. “Comparison of thermo-oxidative ageing and thermal analysis of carbon black-filled NR/Virgin EPDM and NR/recycled EPDM blends.” Polym. Test. 32 (4): 631–639. https://doi.org/10.1016/j.polymertesting.2013.03.019.
Ohtake, Y., Y. Yamamoto, M. Gonokami, T. Nakamura, H. Ishii, and S. Kawahara. 2013. “Degradation profiles in aged EPDM water seals using focused ion beam-scanning electron microscopy.” Polym. Degrad. Stab. 98 (12): 2489–2496. https://doi.org/10.1016/j.polymdegradstab.2013.08.027.
Patel, M., and A. R. Skinner. 2001. “Thermal ageing studies on room-temperature vulcanised polysiloxane rubbers.” Polym. Degrad. Stab. 73 (3): 399–402. https://doi.org/10.1016/S0141-3910(01)00118-5.
Radosavljević, J., and L. Nikolić. 2017. “Interplay between key variables of peroxide cured EPDM and evaluation of electromechanical efficiency for mv cables.” J. Appl. Polym. Sci. 135 (15): 46139. https://doi.org/10.1002/app.46139.
Ren, D. J., J. S. Shen, A. N. Zhou, and J. C. Chai. 2018a. “Prediction of lateral continuous wear of cutter ring in soft ground with quartz sand.” Comput. Geotech. 103 (Nov): 86–92. https://doi.org/10.1016/j.compgeo.2018.07.015.
Ren, D. J., S. L. Shen, A. Arulrajah, and W. C. Cheng. 2018b. “Prediction model of TBM disc cutter wear during tunnelling in heterogeneous ground.” Rock Mech. Rock Eng. 51 (11): 3599–3611. https://doi.org/10.1007/s00603-018-1549-3.
Ren, D. J., S. L. Shen, A. Arulrajah, and H. N. Wu. 2018c. “Evaluation of ground loss ratio with moving trajectories induced in double-O-tube (DOT) tunneling.” Can. Geotech. J. 55 (6): 894–902. https://doi.org/10.1139/cgj-2017-0355.
Sae-oui, P., C. Sirisinha, and U. Thepsuwan. 2007. “Dependence of mechanical and aging properties of chloroprene rubber on silica and ethylene thiourea loadings.” Eur. Polym. J. 43 (1): 185–193. https://doi.org/10.1016/j.eurpolymj.2006.10.015.
Shalabi, F. I., E. J. Cording, and S. L. Paul. 2012. “Concrete segment tunnellining sealant performance under earthquake loading.” Tunn. Undergr. Sp. Tech. 31 (Sep): 51–60. https://doi.org/10.1016/j.tust.2012.04.006.
Shen, S. L., Q. L. Cui, C. E. Ho, and Y. S. Xu. 2016. “Ground response to multiple parallel microtunneling operations in cemented silty clay and sand.” J. Geotech. Geoenviron. Eng. 142 (5): 04016001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001441.
Shen, S. L., H. N. Wu, Y. J. Cui, and Z. Y. Yin. 2014. “Long-term settlement behavior of metro tunnels in the soft deposits of Shanghai.” Tunn. Undergr. Sp. Tech. 40 (Feb): 309–323. https://doi.org/10.1016/j.tust.2013.10.013.
Shen, S. L., Y. X. Wu, and S. L. Misra. 2017. “Calculation of head difference at two sides of a cut-off barrier during excavation dewatering.” Comput. Geotech. 91 (Nov): 192–202. https://doi.org/10.1016/j.compgeo.2017.07.014.
Shi, C. H., C. Y. Cao, M. F. Lei, L. M. Peng, and J. J. Shen. 2015. “Time-dependent performance and constitutive model of EPDM rubber gasket used for tunnel segment joints.” Tunn. Undergr. Sp. Tech. 50 (Aug): 490–498. https://doi.org/10.1016/j.tust.2015.09.004.
Snijders, E. A., A. Boersma, B. V. Baarle, and J. Noordermeer. 2005. “Effect of third monomer type and content on the UV stability of EPDM.” Polym. Degrad. Stab. 89 (2): 200–207. https://doi.org/10.1016/j.polymdegradstab.2004.12.003.
Tan, Y., Y. Lu, and D. Wang. 2018. “Deep excavation of the gate of the orient in suzhou stiff clay: Composite earth-retaining systems and dewatering plans.” J. Geotech. Geoenviron. Eng. 144 (3): 05017009. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001837.
Winiarski, J., W. Tylus, K. Winiarska, and B. Szczygieł. 2015. “The influence of molybdenum on the corrosion resistance of ternary Zn–Co–Mo alloy coatings deposited from citrate–sulphate bath.” Corros. Sci. 91 (Feb): 330–340. https://doi.org/10.1016/j.corsci.2014.11.037.
Wu, H. N., R. Q. Huang, W. J. Sun, S. L. Shen, Y. S. Xu, Y. B. Liu, and S. J. Du. 2014. “Leaking behaviour of shield tunnels under the Huangpu River of Shanghai with induced hazards.” Nat. Hazards 70 (2): 1115–1132. https://doi.org/10.1007/s11069-013-0863-z.
Wu, H. N., S. L. Shen, and J. Yang. 2017a. “Identification of tunnel settlement caused by land subsidence in soft deposit of Shanghai.” J. Perform. Constr. Facil. 31 (6): 04017092. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001082.
Wu, H. N., S. L. Shen, J. Yang, and A. N. Zhou. 2018. “Soil-tunnel interaction modelling for shield tunnels considering shearing dislocation in longitudinal joints.” Tunn. Undergr. Sp. Tech. 78 (Aug): 168–177. https://doi.org/10.1016/j.tust.2018.04.009.
Wu, Y. X., H. M. Lyu, J. Han, and S. L. Shen. 2019. “Dewatering-induced building settlement around a deep excavation in soft deposit in Tianjin, China.” J. Geotech. Geoenviron. Eng. 145 (5): 05019003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002045.
Wu, Y. X., J. S. Shen, W. C. Cheng, and T. Hino. 2017b. “Semi-analytical solution to pumping test data with barrier, wellbore storage, and partial penetration effects.” Eng. Geol. 226 (Aug): 44–51. https://doi.org/10.1016/j.enggeo.2017.05.011.
Wu, Y. X., S. L. Shen, and D. J. Yuan. 2016. “Characteristics of dewatering induced drawdown curve under blocking effect of retaining wall in aquifer.” J. Hydrol. 539 (2016): 554–566. https://doi.org/10.1016/j.jhydrol.2016.05.065.
Yan, Z. G., Y. Shen, H. H. Zhu, X. J. Li, and Y. Lu. 2015. “Experimental investigation of reinforced concrete and hybrid fibre reinforced concrete shield tunnel segments subjected to elevated temperature.” Fire Saf. J. 71 (3): 86–99. https://doi.org/10.1016/j.firesaf.2014.11.009.
Yang, C., S. L. Shen, D. W. Hou, S. M. Liao, and D. J. Yuan. 2018. “Material properties of the seal gasket for shield tunnels: A review.” Constr. Build. Mater. 191 (Dec): 877–890. https://doi.org/10.1016/j.conbuildmat.2018.10.021.
Zaharescu, T., M. Giurginca, and S. Jipa. 1999. “Radiochemical oxidation of ethylene–propylene elastomers in the presence of some phenolic antioxidants.” Polym. Degrad. Stab. 63 (2): 245–251. https://doi.org/10.1016/S0141-3910(98)00100-1.
Zhang, N., J. S. Shen, A. N. Zhou, and A. Arulrajah. 2018. “Tunneling induced geohazards in mylonite rock fault with rich groundwater: A case study in Guangzhou.” Tunn. Undergr. Sp. Tech. 74 (Apr): 262–272. https://doi.org/10.1016/j.tust.2017.12.021.
Zhao, Q., X. Li, and J. Gao. 2007. “Aging of ethylene–propylene–diene monomer (EPDM) in artificial weathering environment.” Polym. Degrad. Stab. 92 (10): 1841–1846. https://doi.org/10.1016/j.polymdegradstab.2007.07.001.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 32Issue 7July 2020

History

Received: Jul 29, 2019
Accepted: Dec 26, 2019
Published online: Apr 28, 2020
Published in print: Jul 1, 2020
Discussion open until: Sep 28, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Ze-Nian Wang [email protected]
Ph.D. Candidate, State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean, and Civil Engineering, Shanghai Jiao Tong Univ., 800 Dong Chuan Rd., Minhang, Shanghai 200240, China. Email: [email protected]
Professor, Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education and College of Engineering, Shantou Univ., Shantou, Guangdong 515063, China (corresponding author). ORCID: https://orcid.org/0000-0002-5610-7988. Email: [email protected]
Associate Professor, Discipline of Civil and Infrastructure, School of Engineering, Royal Melbourne Institute of Technology, VIC 3001, Australia. ORCID: https://orcid.org/0000-0001-5209-5169. Email: [email protected]
Ye-Shuang Xu, Ph.D. [email protected]
Associate Professor, State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean, and Civil Engineering, Shanghai Jiao Tong Univ., Shanghai 200240, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share