Technical Papers
Mar 4, 2020

Alkali-Activated Concrete Based on Natural Volcanic Pozzolan: Chemical Resistance to Sulfate Attack

Publication: Journal of Materials in Civil Engineering
Volume 32, Issue 5

Abstract

In this article, a comparative analysis of the sulfate resistance (Na2SO4 and MgSO4) of an alkali-activated binary concrete (AABC) (70% natural volcanic pozzolan and 30% granulated blast-furnace slag) and a concrete based on ordinary portland cement (OPC) is performed. The AABC and OPC concrete were cured for 28 days prior to their immersion in solutions of sulfates (5% by weight) for a period of up to 730 days. Dimensional changes, compressive strength, absorption, and porosity properties were evaluated at different test ages. Additionally, the level of concrete deterioration was monitored by visual inspection, scanning electron microscopy, and X-ray diffraction (DRX). The results show that the AABC presents resistance to sulfate attack greater than that of OPC. The percentage of expansion to 730-day exposure for AABC was 0.0985% in Na2SO4 with a compressive strength index of 0.58%; in MgSO4, these values were 0.1471% and 20.85%, respectively. AABC complies with the expansion limit specified by ASTM C1012 for the most severe class of exposure (S3). This finding allows for the classification of the AABC as a high-Na2SO4-resistant concrete.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data generated or used during the study appear in the submitted article. Additional information is available from the corresponding author by request.

Acknowledgments

The authors, members of the Composites Materials Group (CENM) of the Universidad del Valle (Cali-Colombia), thank the Administrative Department of Science, Technology and Innovation (Colciencias) for the support received during the project Construcción de prototipo a escala de vivienda rural utilizando materiales innovadores de baja huella de carbono (Prototype Construction of Rural Housing at Scale Using Innovative Materials with Low Carbon Footprint), Contract 096-2016, under which this research was conducted.

References

ACI (American Concrete Institute). 2008. Building code requirement for structural concrete. ACI 318. Farmington Hills, MI: ACI.
Aguirre-Guerrero, A., and R. Mejía de Gutiérrez. 2013. “Durability of reinforced concrete exposed to aggressive conditions.” Mater. Constr. 63 (309): 7–38. https://doi.org/10.3989/mc.2013.00313.
Albitar, M., M. S. Mohamed Ali, P. Visintin, and M. Drechsler. 2017. “Durability evaluation of geopolymer and conventional concretes.” Constr. Build. Mater. 136 (Apr): 374–385. https://doi.org/10.1016/j.conbuildmat.2017.01.056.
Alcamand, H., P. Borges, F. Silva, A. Carolina, and C. Trindade. 2018. “The effect of matrix composition and calcium content on the sulfate durability of metakaolin and metakaolin/slag alkali-activated mortars.” Ceram. Int. 44 (5): 5037–5044. https://doi.org/10.1016/j.ceramint.2017.12.102.
ASTM. 2013. Standard test method for density, absorption, and voids in hardened concrete. ASTM C642. West Conshohocken, PA: ASTM International.
ASTM. 2015. Standard test method for slump of hydraulic-cement concrete. ASTM C143/C143M-15a. West Conshohocken, PA: ASTM International.
ASTM. 2017. Standard performance specification for hydraulic cement. ASTM C1157/C1157M. West Conshohocken, PA: ASTM International.
ASTM. 2018a. Standard test method for length change of hydraulic-cement mortars exposed to a sulfate solution. ASTM C1012/C1012M-18b. West Conshohocken, PA: ASTM International.
ASTM. 2018b. Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39/C39M. West Conshohocken, PA: ASTM International.
Bakharev, T. 2005. “Durability of geopolymer materials in sodium and magnesium sulfate solutions.” Cem. Concr. Res. 35 (6): 1233–1246. https://doi.org/10.1016/j.cemconres.2004.09.002.
Bakharev, T., J. Sanjayan, and Y.-B. Cheng. 2002. “Sulfate attack on alkali-activated slag concrete.” Cem. Concr. Res. 32 (2): 211–216. https://doi.org/10.1016/S0008-8846(01)00659-7.
Baščarević, Z., M. Komljenović, Z. Miladinović, V. Nikolić, N. Marjanović, and R. Petrović. 2015. “Impact of sodium sulfate solution on mechanical properties and structure of fly ash based geopolymers.” Mater. Struct. 48 (3): 683–697. https://doi.org/10.1617/s11527-014-0325-4.
Bondar, D., C. J. Lynsdale, and N. B. Milestone. 2013. “Alkali-activated natural pozzolan concrete as new construction material.” ACI Mater. J. 110 (3): 331–337. https://doi.org/10.14359/51685667.
Bondar, D., C. J. Lynsdale, N. B. Milestone, and N. Hassani. 2015. “Sulfate resistance of alkali activated pozzolans.” Int. J. Concr. Struct. Mater. 9 (2): 145–158. https://doi.org/10.1007/s40069-014-0093-0.
Bondar, D., C. J. Lynsdale, N. B. Milestone, N. Hassani, and A. A. Ramezanianpour. 2011. “Engineering properties of alkali activated natural pozzolan concrete.” ACI Mater. J. 108 (1): 64–72.
Brown, P. W. 1981. “An evaluation of the sulfate resistance of cements in a controlled environment.” Cem. Concr. Res. 11 (5–6): 719–727. https://doi.org/10.1016/0008-8846(81)90030-2.
Chindaprasirt, P., P. Paisitsrisawat, and U. Rattanasak. 2014. “Strength and resistance to sulfate and sulfuric acid of ground fluidized bed combustion fly ash-silica fume alkali-activated composite.” Adv. Powder Technol. 25 (3): 1087–1093. https://doi.org/10.1016/j.apt.2014.02.007.
Chindaprasirt, P., U. Rattanasak, and S. Taebuanhuad. 2013. “Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer.” Mater. Struct. 46 (3): 375–381. https://doi.org/10.1617/s11527-012-9907-1.
Chotetanorm, C., P. Chindaprasirt, V. S. R. Sata, and A. Sathonsaowaphak. 2013. “High-calcium bottom ash geopolymer: Sorptivity, pore size, and resistance to sodium sulfate attack.” J. Mater. Civ. Eng. 25 (1): 105–111. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000560.
Criado, M., A. Palomo, and A. Fernández-Jiménez. 2005. “Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products.” Fuel 84 (16): 2048–2054. https://doi.org/10.1016/j.fuel.2005.03.030.
Davidovits, J. 1994. “Properties of geopolymer cements.” In Proc., 1st Int. Conf Alkaline Cements and Concretes, 131–149. Saint-Quentin, France: Geopolymer Institute.
De La Torre, A. G., S. Bruque, and M. A. G. Aranda. 2001. “Rietveld quantitative amorphous content analysis.” J. Appl. Crystallogr. 34 (2): 196–202. https://doi.org/10.1107/S0021889801002485.
Donatello, S., A. Fernández-Jimenez, and A. Palomo. 2013. “Very high volume fly ash cements. Early age hydration study using Na2SO4 as an activator.” J. Am. Ceram. Soc. 96 (3): 900–906. https://doi.org/10.1111/jace.12178.
Duan, P., C. Yan, and W. Zhou. 2016. “Influence of partial replacement of fly ash by metakaolin on mechanical properties and microstructure of fly ash geopolymer paste exposed to sulfate attack.” Ceram. Int. 42 (2): 3504–3517. https://doi.org/10.1016/j.ceramint.2015.10.154.
Džunuzović, N., M. Komljenović, V. Nikolić, and T. Ivanović. 2017. “External sulfate attack on alkali-activated fly ash-blast furnace slag composite.” Constr. Build. Mater. 157 (Dec): 737–747. https://doi.org/10.1016/j.conbuildmat.2017.09.159.
Eglinton, M. 2003. “Resistance of concrete to destructive agencies.” In Lea’s chemistry of cement and concrete, edited by P. C. Hewlett, 299–342. Oxford, UK: Butterworth-Heinemann.
Elyamany, H. E., A. E. M. Abd Elmoaty, and A. M. Elshaboury. 2018. “Magnesium sulfate resistance of geopolymer mortar.” Constr. Build. Mater. 184 (Sep): 111–127. https://doi.org/10.1016/j.conbuildmat.2018.06.212.
EMPA (Swiss Federal Laboratories for Materials Science and Technology). 1989. Test no. 5—Water conductivity. EMPA SIA 162/1. Dübendorf, Switzerland: EMPA.
Fernandez-Jimenez, A., I. García-Lodeiro, and A. Palomo. 2007. “Durability of alkali-activated fly ash cementitious materials.” J. Mater. Sci. 42 (9): 3055–3065. https://doi.org/10.1007/s10853-006-0584-8.
Fuller, W. B., and S. E. Thomson. 1907. “The laws of proportioning concrete.” Trans. Am. Soc. Civ. Eng. 59 (2): 67–143.
Garcia-Lodeiro, I., O. Maltseva, A. Palomo, and A. Fernandez-Jimenez. 2012. “Hybrid alkaline cements. Part I: Fundamentals.” Rev. Romana Mater. 42 (4): 330–335.
Glukhovsky, V. D., G. S. Rostovskaja, and G. V. Rumyna. 1980. “High strength slag-alkaline cements.” In Vol. 3 of Proc., 7th Int. Congress Chemistry Cement, 164–168. Paris: Éditions Septima.
Haddad, R. H., and O. Alshbuol. 2016. “Production of geopolymer concrete using natural pozzolan: A parametric study.” Constr. Build. Mater. 114 (Jul): 699–707. https://doi.org/10.1016/j.conbuildmat.2016.04.011.
Heikal, M., M. Y. Nassar, G. El-Sayed, and S. M. Ibrahim. 2014. “Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag.” Constr. Build. Mater. 69 (Oct): 60–72. https://doi.org/10.1016/j.conbuildmat.2014.07.026.
Ismail, I., S. A. Bernal, J. L. Provis, S. Hamdan, and J. S. J. Van Deventer. 2013. “Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure.” Mater. Struct. 46 (3): 361–373. https://doi.org/10.1617/s11527-012-9906-2.
Karakoç, M. B., I. Türkmen, M. M. Maraş, F. Kantarci, and R. Demirboga. 2016. “Sulfate resistance of ferrochrome slag based geopolymer concrete.” Ceram. Int. 42 (1): 1254–1260. https://doi.org/10.1016/j.ceramint.2015.09.058.
Kelham, S. 2003. “Acid, soft water and sulfate attack.” In Advanced concrete technology, edited by J. Newman and B. S. Choo, 278–289. Amsterdam, Netherlands: Elsevier.
Komljenovic, M., Z. Bascarevic, N. Marjanovic, and V. Nikolic. 2013. “External sulfate attack on alkali-activated slag.” Constr. Build. Mater. 49 (Dec): 31–39. https://doi.org/10.1016/j.conbuildmat.2013.08.013.
Krivenko, P. 2017. “Why alkaline activation—60 years of the theory and practice of alkali-activated materials.” J. Ceram. Sci. Technol. 8 (3): 323–334. https://doi.org/10.4416/JCST2017-00042.
Kwasny, J., T. A. Aiken, M. N. Soutsos, J. A. McIntosh, and D. J. Cleland. 2018. “Sulfate and acid resistance of lithomarge-based geopolymer mortars.” Constr. Build. Mater. 166 (Mar): 537–553. https://doi.org/10.1016/j.conbuildmat.2018.01.129.
Mehta, P. K., and P. J. M. Monteiro. 2006. “Durability.” In Concrete: Microstructure, properties, and materials. 4th ed., 113–187. New York: McGraw-Hill.
Nehdi, M. L., A. R. Suleiman, and A. M. Soliman. 2014. “Investigation of concrete exposed to dual sulfate attack.” Cem. Concr. Res. 64 (Oct): 42–53. https://doi.org/10.1016/j.cemconres.2014.06.002.
Neville, A. 2006. Concrete: Neville’s insights and issues, 113–164. London: Thomas Telford.
Provis, J. L., and S. A. Bernal. 2014. “Geopolymers and related alkali-activated materials.” Annu. Rev. Mater. Res. 44 (1): 299–330. https://doi.org/10.1146/annurev-matsci-070813-113515.
Puertas, F. 1995. “Cementos de escorias activadas alcalinamente: Situación actual y perspectivas de futuro.” Mater. Constr. 45 (239): 53–64. https://doi.org/10.3989/mc.1995.v45.i239.553.
Puertas, F., R. Mejía de Gutiérrez, A. Fernández-Jiménez, S. Delvasto, and J. Maldonado. 2002. “Alkaline cement mortars. Chemical resistance to sulfate and seawater attack.” Mater. Construcción 52 (267): 55–71. https://doi.org/10.3989/mc.2002.v52.i267.326.
Puertas, F., M. Palacios, H. Manzano, J. S. Dolado, A. Rico, and J. Rodríguez. 2011. “A model for the C-A-S-H gel formed in alkali-activated slag cements.” J. Eur. Ceram. Soc. 31 (12): 2043–2056. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036.
Rashad, A. M., Y. Bai, P. A. M. Basheer, N. B. Milestone, and N. C. Collier. 2013. “Hydration and properties of sodium sulfate activated slag.” Cem. Concr. Compos. 37 (Mar): 20–29. https://doi.org/10.1016/j.cemconcomp.2012.12.010.
Rashidian-Dezfouli, H., and P. R. Rangaraju. 2017. “A comparative study on the durability of geopolymers produced with ground glass fiber, fly ash, and glass-powder in sodium sulfate solution.” Constr. Build. Mater. 153 (Oct): 996–1009. https://doi.org/10.1016/j.conbuildmat.2017.07.139.
RILEM. 2014. Alkali-activated materials: State-of-the-art report. Dordrecht, Netherlands: Springer.
Robayo-Salazar, R. A., R. Mejia de Gutierrez, and F. Puertas. 2017. “Study of synergy between a natural volcanic pozzolan and a granulated blast furnace slag in the production of geopolymeric pastes and mortars.” Constr. Build. Mater. 157 (Dec): 151–160. https://doi.org/10.1016/j.conbuildmat.2017.09.092.
Robayo-Salazar, R. A., and R. Mejía de Gutiérrez. 2018. “Natural volcanic pozzolans as an available raw material for alkali-activated materials in the foreseeable future: A review.” Constr. Build. Mater. 189 (Nov): 109–118. https://doi.org/10.1016/j.conbuildmat.2018.08.174.
Rodríguez, E., S. Bernal, R. Mejía de Gutiérrez, and F. Puertas. 2008. “Alternative concrete based on alkali-activated slag.” Mater. Construcción 58 (291): 53–67. https://doi.org/10.3989/mc.2008.v58.i291.104.
Sata, V., A. Sathonsaowaphak, and P. Chindaprasirt. 2012. “Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack.” Cem. Concr. Compos. 34 (5): 700–708. https://doi.org/10.1016/j.cemconcomp.2012.01.010.
Shi, C., M. Tang, and X. Wu. 1993. “Research on alkali-activated cementitious systems in China: A review.” Adv. Cem. Res. 5 (17): 1–7. https://doi.org/10.1680/adcr.1993.5.17.1.
Valencia-Saavedra, W., D. Angulo Ramírez, and R. Mejía de Gutiérrez. 2016. “Fly ash-slag geopolymer concrete: Resistance to sodium and magnesium sulfate attack.” J. Mater. Civ. Eng. 28 (12): 1–9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001618.
Valencia-Saavedra, W., D. Angulo Ramírez, and R. Mejía de Gutiérrez. 2018. “Chemical resistance of alkali-activated fly ash/slag concrete: Sulfates and acids.” Inf. Técnico 82 (1): 67–77. https://doi.org/10.23850/22565035.1351.
Yusuf, M. O. 2015. “Performance of slag blended alkaline activated palm oil fuel ash mortar in sulfate environments.” Constr. Build. Mater. 98 (Nov): 417–424. https://doi.org/10.1016/j.conbuildmat.2015.07.012.
Zhang, J., C. Shi, Z. Zhang, and Z. Ou. 2017. “Durability of alkali-activated materials in aggressive environments: A review on recent studies.” Constr. Build. Mater. 152 (Oct): 598–613. https://doi.org/10.1016/j.conbuildmat.2017.07.027.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 32Issue 5May 2020

History

Received: Jun 3, 2019
Accepted: Oct 18, 2019
Published online: Mar 4, 2020
Published in print: May 1, 2020
Discussion open until: Aug 4, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Patricia Aragón
Research Assistant, Composites Materials Group, Universidad del Valle, Cali 760032, Colombia.
Rafael A. Robayo-Salazar, Ph.D.
Professor, Composites Materials Group, Universidad del Valle, Cali 760032, Colombia.
Titular Professor, Composites Materials Group, Universidad del Valle, Cali 760032, Colombia (corresponding author). ORCID: https://orcid.org/0000-0002-5404-2738. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share