Abstract

The aim of this study was to test the isotropic behavior hypothesis for concrete by means of wave propagation tests. The elastic properties of the concrete were determined using ultrasound tests with 1.0 MHz longitudinal and transversal transducers in polyhedral specimens with 26 faces. The concrete was analyzed using the theoretical aspects of three types of elastic behavior, namely isotropy, transverse isotropy, and orthotropy, in concretes with different compressive strengths and coarse aggregate size distributions. The results show that there were no statistically significant differences in the elastic parameters on the three symmetry axes. The constitutive relation between the shear modulus and longitudinal modulus, which involves Poisson’s ratio, was as expected for isotropic materials, and the elastic properties of the concrete differed equally as a function of the compressive strength. Considering the results, the isotropic behavior of the concrete was validated regardless of the elastic behavior adopted in the analyses.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to thank the Support Fund for Teaching, Research and Extension (FAEPEX) for the scholarship, the São Paulo Research Foundation (FAPESP), São Paulo, Brazil (Proc. 2016/00658-4) for the research funding and the Coordination of Improvement of Higher-Level Personnel (CAPES, Brazil) for financing part of this study.

References

ABNT (Associação Brasileira de Normas Técnicas). 2009a. Agregado miúdo—Determinação da massa específica e massa específica aparente [Small aggregate—Specific density and apparent density determination]. ABNT NBR NM 52. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2009b. Agregados para concreto—Especificação [Aggregates for concrete—Specification]. ABNT NBR 7211. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2014. Projeto de estruturas de concreto—Procedimento [Design of concrete structures—Procedure]. ABNT NBR 6118. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2015. Concreto—Procedimento para moldagem e cura de corpos de prova [Concrete—Procedure for molding and curing concrete test specimens]. ABNT NBR 5738. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2018a. Cimento portland—Requisitos [Portland cement—Requirements]. ABNT NBR 16697. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2018b. Concreto—Ensaios de compressão de corpos-de-prova cilíndricos [Concrete—Compression tests of cylindrical specimens]. ABNT NBR 5739. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2019. Concreto endurecido—Determinação da velocidade de propagação da onda ultrassônica [Hardened concrete—Determination of ultrasonic wave transmission velocity]. ABNT NBR 8802. Rio de Janeiro, Brazil: ABNT.
Agrawal, M., A. Prasad, J. R. Bellare, and A. A. Seshia. 2016. “Characterization of mechanical properties of materials using ultrasound broadband spectroscopy.” Ultrasonics 64 (Jan): 186–195. https://doi.org/10.1016/j.ultras.2015.09.001.
Bauer, L. A. F. 2008. Materiais de Construção [Construction materials]. Rio de Janeiro, Brazil: Livros Técnicos e Científicos.
Bernard, S., Q. Grimal, and P. Laugier. 2014. “Resonant ultrasound spectroscopy for viscoelastic characterization of anisotropic attenuative solid materials.” J. Acoust. Soc. Am. 135 (5): 2601–2613.https://doi.org/10.1121/1.4869084.
Bertoldo, C., R. Gonçalves, E. S. Merlo, O. Santaclara, M. Ruy, and M. E. M. Moreira. 2013. “Elastic constants of Pinus pinaster wood determined by wave propagation.” In Proc., 18th Int. Nondestructive Testing and Evaluation of Wood Symp. Madison, WI: USDA Forest Service and Forest Products Laboratory.
Cicekli, U., G. Z. Voyiadjis, and A. K. R. Al-Rub. 2007. “A plasticity and anisotropic damage model for plain concrete.” Int. J. Plast. 23 (10–11): 1874–1900.https://doi.org/10.1016/j.ijplas.2007.03.006.
Figueiredo, E. P. 2005. Vol. 2 of Inspeção e diagnóstico de estruturas de concreto com problemas de resistência, fissuras e deformações. Concreto: Ensino, pesquisa e realizações [Inspection and diagnosis of concrete structures with resistance problems, cracks and deformations. Concrete: Teaching, research and achievements], 985–1015. São Paulo, Brazil: IBRACON.
François, M. 1995. “Identification des symétries matérielles de matériaux anisotropes.” Doctoral thesis. Sciences de l’ingénieur [Physics], Univ. of Paris.
François, M. L. M., G. Geymonat, and Y. Berthaud. 1998. “Determination of the symmetries of an experimentally determined stiffness tensor; application to acoustic measurements.” Accessed May 16, 2018. http://search.ebscohost.com/login.aspx?direct=true&db=edsarx&AN=edsarx.0911.5216&lang=pt-br&site=eds-live&scope=site.
Gonçalves, R., A. Trinca, and D. Cerri. 2011. “Comparison of elastic constants of wood determined by ultrasonic wave propagation and static compression testing.” Wood Fiber Sci. 43 (1): 64–75.
Gonçalves, R., A. Trinca, and B. Pellis. 2014. “Elastic constants of wood determined by ultrasound using three geometries of specimens.” Wood Sci. Technol. 48 (2): 269–287.
Heyliger, P., A. Jilani, H. Ledbetter, R. G. Leisure, and C. L. Wang. 1993. “Elastic constants of isotropic cylinders using resonant ultrasound.” J. Acoust. Soc. Am. 94 (3): 1482–1487. https://doi.org/10.1121/1.408151.
Hughes, B. P., and J. E. Ash. 1970. “Anisotropy and failure criteria for concrete.” Matériaux Constr. 3 (6): 371–374. https://doi.org/10.1007/BF02478760.
Isaak, D. G., and I. Ohno. 2003. “Elastic constants of chrome-diopside: Application of resonant ultrasound spectroscopy to monoclinic single-crystals.” Phys. Chem. Miner. 30 (7): 430–439. https://doi.org/10.1007/s00269-003-0334-2.
Isaia, G. C. 2017. Materiais de construção civil e princípios de ciência e engenharia de materiais. São Paulo, Brazil: Brazilian Concrete Institute.
Liu, X., and V. Shapiro. 2017. “Sample-based synthesis of two-scale structures with anisotropy.” Comput.-Aided Des. 90 (Sep): 199–209. https://doi.org/10.1016/j.cad.2017.05.013.
Martinović Sanja, P., M. Vlahović Milica, B. Majstorović Jelena, and T. D. Volkov-Husović. 2016. “Anisotropy analysis of low cement concrete by ultrasonic measurements and image analysis.” Sci. Sintering 48 (1): 57–70. https://doi.org/10.2298/SOS1601057M.
Maynard, J. D. 1992. “Resonant ultrasound spectroscopy for viscoelastic characterization of anisotropic attenuative solid materials.” Acoust. Soc. Am. 135 (5): 2601–2613. https://doi.org/10.1121/1.4869084.
Maynard, J. D., and G. Liu. 2012. “Measuring elastic constants of arbitrarily shaped samples using resonant ultrasound spectroscopy.” J. Acoust. Soc. Am. 131 (3): 2068–2078. https://doi.org/10.1121/1.3677259.
Migliori, A., and J. P. Maynard. 2005. “Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens.” Rev. Sci. Instrum. 76 (12): 121301. https://doi.org/10.1063/1.2140494.
Migliori, A., J. L. Sarrao, W. M. Visscher, T. M. Bell, M. Lei, Z. Fisk, and R. G. Leisure. 1993. “Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids.” Phys. B: Phys. Condens. Matter 183 (1): 1–24. https://doi.org/10.1016/0921-4526(93)90048-B.
Papa, E., and A. Taliercio. 1996. “Anisotropic damage model for the multiaxial static and fatigue behaviour of plain concrete.” Eng. Fract. Mech. 55 (2): 163–179. https://doi.org/10.1016/0013-7944(96)00004-5.
Pereira, E., and M. H. F. Medeiros. 2012. “Pull off test to evaluate the compressive strength of concrete: An alternative to Brazilian standard techniques.” Rev. IBRACON Estruturas e Materiais 5 (6): 757–780. https://doi.org/10.1590/S1983-41952012000600003.
Rashid, Y. R. 1968. “Ultimate strength analysis of prestressed concrete pressure vessels.” Nucl. Eng. Des. 7 (4): 334–344. https://doi.org/10.1016/0029-5493(68)90066-6.
Seiner, H., L. S. P. Bodnárová, A. Kruisová, M. Landa, A. Pablos, and M. Belmonte. 2012. “Sensitivity of the resonant ultrasound spectroscopy to weak gradients of elastic properties.” J. Acoust. Soc. Am. 131 (5): 3775–3785. https://doi.org/10.1121/1.3695393.
Torrenti, J. M., G. Pijaudier-Cabot, and J. M. Reynouard. 2013. Mechanical behavior of concrete. Hoboken, NJ: Wiley. https://doi.org/10.1002/9781118557587.
Trinca, A. J. 2011. “Metodologia para determinação das constantes elásticas da madeira por ultrassom.” Doctoral thesis, School of Agricultural Engineering, Univ. of Campinas.
Ulrich, T., K. R. Mccall, and R. A. Guyer. 2002. “Determination of elastic moduli of rock samples using resonant ultrasound spectroscopy.” J. Acoustic Soc. Am. 111 (4): 1667–1674. https://doi.org/10.1121/1.1463447.
Vázquez, C., R. Goncalves, C. Bertoldo, V. Bano, A. Vega, J. Crespo, and M. Guaita. 2015. “Determination of the mechanical properties of Castanea sativa Mill. using ultrasonic wave propagation and comparison with static compression and bending methods.” Wood Sci. Technol. 49 (3): 607–622. https://doi.org/10.1007/s00226-015-0719-7.
Wang, Z., Z. Gao, Y. Wang, Y. Cao, G. Wang, B. Liu, and Z. Wang. 2015. “A new dynamic testing method for elastic, shear modulus and Poisson’s ratio of concrete.” Constr. Build. Mater. 100 (Dec): 129–135. https://doi.org/10.1016/j.conbuildmat.2015.09.060.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 32Issue 4April 2020

History

Received: Mar 22, 2019
Accepted: Jul 30, 2019
Published online: Feb 4, 2020
Published in print: Apr 1, 2020
Discussion open until: Jul 4, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, Laboratory of Nondestructive Testing, School of Agricultural Engineering—FEAGRI, Univ. of Campinas, Ave. Cândido Rondon, 501, Barão Geraldo 13083-875, Campinas, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-9039-4805. Email: [email protected]
Recieli Knoner Santos Gorski [email protected]
Master, Laboratory of Nondestructive Testing, School of Agricultural Engineering—FEAGRI, Univ. of Campinas, Ave. Cândido Rondon, 501, Barão Geraldo 13083-875, Campinas, Brazil. Email: [email protected]
Professor, Laboratory of Nondestructive Testing, School of Agricultural Engineering—FEAGRI, Univ. of Campinas, Ave. Cândido Rondon, 501, Barão Geraldo 13083-875, Campinas, Brazil. ORCID: https://orcid.org/0000-0003-0406-8988. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share