Technical Papers
Jan 24, 2020

Effect of Accelerated Carbonation on the Performance of Concrete Containing Natural Zeolite

Publication: Journal of Materials in Civil Engineering
Volume 32, Issue 4

Abstract

An alternative carbonation technique was studied with normal concrete (NC) and concrete blended with natural zeolite (ZC) samples under an artificial environment with the help of carbonated-water curing. The effect of carbonated-water curing on concrete mixes incorporating natural zeolite powder as a partial replacement for cement was examined in this study. Accelerated carbonation was carried out by immersing concrete specimens in a 0.352-M sodium bicarbonate solution. The experimental program consisted of the evaluation of compressive strength, pH profiling, measurement of carbonation depth, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and chemical composition measurements in order to study the extent of carbonation. ZC specimens cured in carbonated water had higher compressive strength development, greater extent of CaCO3 formation, and lower pH values than concrete cured in normal water for same curing period. Results obtained from XRD, TGA, FTIR, and chemical composition measurements showed that the amount of calcium carbonate increased in the carbonated concrete, which is closely associated with carbonation.

Get full access to this article

View all available purchase options and get full access to this article.

References

Ahmadi, B., H. Layssi, M. Shekarchi, and J. E. Nejad. 2007. “Comparative study of natural zeolite and fly ash to prevent alkali-silica reaction.” In Proc., 9th Canmet/ACI Int. Conf. on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, 293–302. Farmington Hills, MI: American Concrete Institute.
Ahmadi, B., and M. Shekarchi. 2010. “Use of natural zeolite as a supplementary cementitious material.” Cem. Concr. Compos. 32 (2): 134–141. https://doi.org/10.1016/j.cemconcomp.2009.10.006.
ASTM. 2017. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM C618. West Conshohocken, PA: ASTM.
Bakharev, T., J. G. Sanjayan, and Y. B. Cheng. 2001. “Resistance of alkali-activated slag concrete to carbonation.” Cem. Concr. Res. 31 (9): 1277–1283. https://doi.org/10.1016/S0008-8846(01)00574-9.
Bilim, C. 2011. “Properties of cement mortars containing clinoptilolite as a supplementary cementitious material.” Constr. Build. Mater. 25 (8): 3175–3180. https://doi.org/10.1016/j.conbuildmat.2011.02.006.
BIS (Bureau of Indian Standards). 1963. Methods of test for aggregates for concrete–particle size and shape. IS:2386-Part 1. New Delhi, India: BIS.
BIS (Bureau of Indian Standards). 1982. Handbook on concrete mixes. SP23 IS. New Delhi, India: BIS.
BIS (Bureau of Indian Standards). 2005. Plain and reinforced concrete code of practice. Indian Standard 456. New Delhi, India: BIS.
BIS (Bureau of Indian Standards). 2013. Ordinary portland cement 53 Grade—Specification. IS:12269. New Delhi, India: BIS.
BIS (Bureau of Indian Standards). 2016. Coarse and fine aggregates for concrete—Specification. IS:383. New Delhi, India: BIS.
Black, L., C. Breen, J. Yarwood, K. Garbev, P. Stemmermann, and B. Gasharova. 2007. “Structural features of C–S–H (I) and its carbonation in air—A Raman spectroscopic study. II: Carbonated phases.” J. Am. Ceram. Soc. 90 (3): 908–917. https://doi.org/10.1111/j.1551-2916.2006.01429.x.
Canpolat, F., K. Yılmaz, M. M. Köse, M. Sümer, and M. A. Yurdusev. 2004. “Use of zeolite, coal bottom ash and fly ash as replacement materials in cement production.” Cem. Concr. Res. 34 (5): 731–735. https://doi.org/10.1016/S0008-8846(03)00063-2.
Castellote, M., C. Andrade, X. Turrillas, J. Campo, and G. J. Cuello. 2008. “Accelerated carbonation of cement pastes in situ monitored by neutron diffraction.” Cem. Concr. Res. 38 (12): 1365–1373. https://doi.org/10.1016/j.cemconres.2008.07.002.
Choi, S. G., S. S. Park, S. Wu, and J. Chu. 2017. “Methods for calcium carbonate content measurement of biocemented soils.” J. Mater. Civ. Eng. 29 (11): 06017015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002064.
Colella, C., M. D. Gennaro, and R. Aiello. 2001. “Use of zeolitic tuff in the building industry.” Rev. Mineral. Geochem. 45 (1): 551–587. https://doi.org/10.2138/rmg.2001.45.16.
Cultrone, G., E. Sebastian, and M. O. Huertas. 2005. “Forced and natural carbonation of lime-based mortars with and without additives: Mineralogical and textural changes.” Cem. Concr. Res. 35 (12): 2278–2289. https://doi.org/10.1016/j.cemconres.2004.12.012.
Damtoft, J. S., J. Lukasik, D. Herfort, D. Sorrentino, and E. M. Gartner. 2008. “Sustainable development and climate change initiatives.” Cem. Concr. Res. 38 (2): 115–127. https://doi.org/10.1016/j.cemconres.2007.09.008.
Ding, J. T., P. Y. Yan, S. L. Liu, and J. Q. Zhu. 1999. “Extreme vertices design of concrete with combined mineral admixtures.” Cem. Concr. Res. 29 (6): 957–960. https://doi.org/10.1016/S0008-8846(99)00069-1.
Duan, P., W. Chen, J. Ma, and Z. Shui. 2013. “Influence of layered double hydroxides on microstructure and carbonation resistance of sulphoaluminate cement concrete.” Constr. Build. Mater. 48: 601–609. https://doi.org/10.1016/j.conbuildmat.2013.07.049.
Dweck, J., P. M. Buchler, A. C. V. Coelho, and F. K. Cartledge. 2000. “Hydration of a portland cement blended with calcium carbonate.” Thermochim. Acta 346 (1–2): 105–113. https://doi.org/10.1016/S0040-6031(99)00369-X.
Feng, N. Q., G. Z. Li, and X. W. Zang. 1990. “High-strength and flowing concrete with a zeolitic mineral admixture.” Cem. Concr. Aggregates 12 (2): 61–69. https://doi.org/10.1520/CCA10273J.
Feng, N. Q., and G. F. Peng. 2005. “Applications of natural zeolite to construction and building materials in China.” Constr. Build. Mater. 19 (8): 579–584. https://doi.org/10.1016/j.conbuildmat.2005.01.013.
Ghafoori, N., and M. Najimi. 2014. “Structural-grade concrete containing FBC and PCC residues. I: Non-cement concrete.” Mag. Concr. Res. 66 (8): 377–386. https://doi.org/10.1680/macr.13.00235.
Ghrici, M., S. Kenai, and E. Meziane. 2006. “Mechanical and durability properties of cement mortar with Algerian natural pozzolana.” J. Mater. Sci. 41 (21): 6965–6972. https://doi.org/10.1007/s10853-006-0227-0.
Haselbach, L. M., and J. N. Thomle. 2014. “An alternative mechanism for accelerated carbon sequestration in concrete.” Sustainable Cities Soc. 12 (Jul): 25–30. https://doi.org/10.1016/j.scs.2014.01.001.
Hidalgo, A., C. Domingo, C. Garcia, S. Petit, C. Andrade, and C. Alonso. 2008. “Microstructural changes induced in portland cement-based materials due to natural and supercritical carbonation.” J. Mater. Sci. 43 (9): 3101–3111. https://doi.org/10.1007/s10853-008-2521-5.
Ho, L. S., K. Nakarai, Y. Ogawa, T. Sasaki, and M. Morioka. 2018. “Effect of internal water content on carbonation progress in cement-treated sand and effect of carbonation on compressive strength.” Cem. Concr. Compos. 85 (Jan): 9–21. https://doi.org/10.1016/j.cemconcomp.2017.09.016.
Ipavec, A., R. Gabrovšek, T. Vuk, V. Kaučič, J. Maček, and A. Meden. 2011. “Carboaluminate phases formation during the hydration of calcite-containing portland cement.” J. Am. Ceram. Soc. 94 (4): 1238–1242. https://doi.org/10.1111/j.1551-2916.2010.04201.x.
Janotka, I., and L. Stevula. 1998. “Effect of bentonite and zeolite on the durability of the cement suspension under sulphate attack.” ACI Mater. J. 95 (6): 710–715.
Ji, Y. S., M. Wu, B. Ding, F. Liu, and F. Gao. 2014. “The experimental investigation of width of semi-carbonation zone in carbonated concrete.” Constr. Build. Mater. 65 (Aug): 67–75. https://doi.org/10.1016/j.conbuildmat.2014.04.095.
Li, N., N. Farzadnia, and C. Shi. 2017. “Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation.” Cem. Concr. Res. 100: 214–226. https://doi.org/10.1016/j.cemconres.2017.07.008.
Liguori, B., D. Caputo, and F. Iucolano. 2015. “Fiber-reinforced lime-based mortars: Effect of zeolite addition.” Constr. Build. Mater. 77: 455–460.
Massazza, F. 1998. “Pozzolana and pozzolanic cements.” In Lea’s chemistry of cement and concrete, edited by P. C. Hewlett, 471–631. London: Elsevier.
McPolin, D. O., P. A. Basheer, A. E. Long, K. T. Grattan, and T. Sun. 2007. “New test method to obtain pH profiles due to carbonation of concretes containing supplementary cementitious materials.” J. Mater. Civ. Eng. 19 (11): 936–946. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:11(936).
Naiqian, F., M. Changchen, and J. Xihuang. 1992. “Natural zeolite for preventing expansion due to alkali-aggregate reaction.” Cem. Concr. Aggregates 14 (2): 93–96.
Naiqian, F., and H. Tingyu. 1998. “Mechanism of natural zeolite powder in preventing alkali-silica reaction in concrete.” Adv. Cem. Res. 10 (3): 101–108. https://doi.org/10.1680/adcr.1998.10.3.101.
Najimi, M., and A. R. Pourkhorshidi. 2011. “Properties of concrete containing copper slag waste.” Mag. Concr. Res. 63 (8): 605–615. https://doi.org/10.1680/macr.2011.63.8.605.
Najimi, M., J. Sobhani, B. Ahmadi, and M. Shekarchi. 2012. “An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan.” Constr. Build. Mater. 35 (Oct): 1023–1033. https://doi.org/10.1016/j.conbuildmat.2012.04.038.
Pan, X., C. Shi, X. Hu, and Z. Ou. 2017. “Effects of CO2 surface treatment on strength and permeability of one-day-aged cement mortar.” Constr. Build. Mater. 154 (Nov): 1087–1095. https://doi.org/10.1016/j.conbuildmat.2017.07.216.
Papadakis, V. G., and S. Tsimas. 2002. “Supplementary cementing materials in concrete. I: Efficiency and design.” Cem. Concr. Res. 32 (10): 1525–1532. https://doi.org/10.1016/S0008-8846(02)00827-X.
Park, S. M., and J. G. Jang. 2018. “Carbonation-induced weathering effect on cesium retention of cement paste.” J. Nuclear Mater. 505: 159–164.
Poon, C. S., L. Lam, S. C. Kou, and Z. S. Lin. 1999. “A study on the hydration rate of natural zeolite blended cement pastes.” Constr. Build. Mater. 13 (8): 427–432. https://doi.org/10.1016/S0950-0618(99)00048-3.
Quanlin, N., and F. Naiqian. 2005. “Effect of modified zeolite on the expansion of alkaline silica reaction.” Cem. Concr. Res. 35 (9): 1784–1788. https://doi.org/10.1016/j.cemconres.2004.10.030.
Ramezanianpour, A. A., R. Mousavi, M. Kalhori, J. Sobhani, and M. Najimi. 2015. “Micro and macro level properties of natural zeolite contained concretes.” Constr. Build. Mater. 101 (Dec): 347–358. https://doi.org/10.1016/j.conbuildmat.2015.10.101.
Rodrıguez-Camacho, R. E., and R. Uribe-Afif. 2002. “Importance of using the natural pozzolans on concrete durability.” Cem. Concr. Res. 32 (12): 1851–1858.
Sharma, D., and S. Goyal. 2018. “Accelerated carbonation curing of cement mortars containing cement kiln dust: An effective way of CO2 sequestration and carbon footprint reduction.” J. Cleaner Prod. 192: 844–854.
Shekarchi, M., B. Ahmadi, and M. Najimi. 2012. “Use of natural zeolite as pozzolanic material in cement and concrete composites.” Chap. 27 in Handbook of natural zeolites, edited by V. J. Inglezakis and A. A. Zorpas, 665–694. Sharjah, United Arab Emirates: Bentham Science Publishers.
Shekarchi, M., J. E. Nejad, B. Ahmadi, and M. Rahimi. 2009. “Improving concrete properties by using natural zeolite. II: Alkali silica reaction.” Iran. Concr. J. 32: 30.
Shi, C., A. F. Jiménez, and A. Palomo. 2011. “New cements for the 21st century: The pursuit of an alternative to portland cement.” Cem. Concr. Res. 41 (7): 750–763. https://doi.org/10.1016/j.cemconres.2011.03.016.
Song, H. W., and S. J. Kwon. 2007. “Permeability characteristics of carbonated concrete considering capillary pore structure.” Cem. Concr. Res. 37 (6): 909–915. https://doi.org/10.1016/j.cemconres.2007.03.011.
Stefanoni, M., U. Angst, and B. Elsener. 2018. “Corrosion rate of carbon steel in carbonated concrete—A critical review.” Cem. Concr. Res. 103 (Jan): 35–48. https://doi.org/10.1016/j.cemconres.2017.10.007.
Sugama, T. 1996. “Hot alkali carbonation of sodium metaphosphate modified fly ash/calcium aluminate blend hydrothermal cements.” Cem. Concr. Res. 26 (11): 1661–1672. https://doi.org/10.1016/S0008-8846(96)00160-3.
Sugama, T., L. E. Brothers, and L. Weber. 2002. “Calcium aluminate cements in fly ash/calcium aluminate blend phosphate cement systems: Their role in inhibiting carbonation and acid corrosion at a low hydrothermal temperature of 90°C.” J. Mater. Sci. 37 (15): 3163–3173. https://doi.org/10.1023/A:1016158328024.
Sugama, T., and N. R. Carciello. 1993. “Carbonation of calcium phosphate cements after long-term exposure to Na2CO3-laden water at 250°C.” Cem. Concr. Res. 23 (6): 1409–1417. https://doi.org/10.1016/0008-8846(93)90078-N.
Sugama, T., N. R. Carciello, and G. Gray. 1992a. “Alkali carbonation of calcium aluminate cements: Influence of set-retarding admixtures under hydrothermal conditions.” J. Mater. Sci. 27 (18): 4909–4916. https://doi.org/10.1007/BF01105253.
Sugama, T., G. Gray, and L. E. Kukacka. 1992b. “Alkali carbonation of autoclaved polymer-cement composites in Na2CO3-laden water at 300°C.” J. Mater. Sci. 27 (1): 180–190. https://doi.org/10.1007/BF02403661.
Valipour, M., F. Pargar, M. Shekarchi, and S. Khani. 2013a. “Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study.” Constr. Build. Mater. 41 (Apr): 879–888. https://doi.org/10.1016/j.conbuildmat.2012.11.054.
Valipour, M., F. Pargar, M. Shekarchi, S. Khani, and M. Moradian. 2013b. “In situ study of chloride ingress in concretes containing natural zeolite, metakaolin and silica fume exposed to various exposure conditions in a harsh marine environment.” Constr. Build. Mater. 46 (Sep): 63–70. https://doi.org/10.1016/j.conbuildmat.2013.03.026.
Vejmelkova, E., D. Konakova, T. Kulovana, M. Keppert, J. Zumar, P. Rovnanikova, and R. Cerny. 2015. “Engineering properties of concrete containing natural zeolite as supplementary cementitious material: Strength, toughness, durability, and hygrothermal performance.” Cem. Concr. Comp. 55 (Jan): 259–267.
Verbeck, G. 1958. Carbonation of hydrated portland cement. ASTM-205. West Conshohocken, PA: ASTM.
Villain, G., M. Thiery, and G. Platret. 2007. “Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry.” Cem. Concr. Res. 37 (8): 1182–1192. https://doi.org/10.1016/j.cemconres.2007.04.015.
Yang, T., B. Keller, E. Magyari, K. Hametner, and D. Günther. 2003. “Direct observation of the carbonation process on the surface of calcium hydroxide crystals in hardened cement paste using an atomic force microscope.” J. Mater. Sci. 38 (9): 1909–1916. https://doi.org/10.1023/A:1023544228319.
Yilmaz, B., A. Uçar, B. Öteyaka, and V. Uz. 2007. “Properties of zeolitic tuff (clinoptilolite) blended portland cement.” Build. Environ. 42 (11): 3808–3815.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 32Issue 4April 2020

History

Received: Feb 14, 2019
Accepted: Jul 30, 2019
Published online: Jan 24, 2020
Published in print: Apr 1, 2020
Discussion open until: Jun 24, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Bura Akshay Ramesh [email protected]
Ph.D. Research Scholar, Applied Mechanics Dept., Sardar Vallabhbhai National Institute of Technology, Surat, Ichchhanath, Gujarat 395007, India. Email: [email protected]
Assistant Professor, Applied Mechanics Dept., Sardar Vallabhbhai National Institute of Technology, Surat, Ichchhanath, Gujarat 395007, India (corresponding author). ORCID: https://orcid.org/0000-0002-1589-919X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share