Abstract

Asphalt binder draindown is a potential issue related to stone matrix asphalt (SMA) mixtures. One convenient approach for reducing binder drainage is the use of fibers as stabilizing additives. This study assesses the feasibility of incorporating fibers from banana plants into an SMA mixture as a proposed use for residues from banana cultivation. We found the fiber content capable of preventing draindown and subsequently evaluated the influence of fiber length on the mechanical properties of an SMA mixture. Samples were prepared in a Superpave gyratory compactor with four different fiber lengths (5, 10, 15, and 20 mm) at a fixed content (0.3% by weight) and then compared to samples without fibers. Indirect tensile strength, resilient and dynamic modulus, flow number, and fatigue life tests were conducted. Overall, fibers improved the mechanical properties analyzed. These enhancements were more pronounced for the samples with 15- and 20-mm fibers. Thus, a smaller number of longer fibers was more beneficial to the fiber reinforcement of mixtures than a larger number of shorter fibers.

Get full access to this article

View all available purchase options and get full access to this article.

References

AASHTO. 2001a. Standard specification for designing stone matrix asphalt (SMA). MP8-01. Washington, DC: AASHTO.
AASHTO. 2001b. Stone matrix asphalt (SMA). AASHTO MP 8-02. Washington, DC: AASHTO.
AASHTO. 2009. Standard method of test for determining dynamic modulus of hot mix asphalt (HMA). AASHTO TP-62. Washington, DC: AASHTO.
AASHTO. 2015. Standard method of test for determining the dynamic modulus and flow number for asphalt mixtures using the asphalt mixture performance tester (AMPT). AASHTO TP 79. Washington, DC: AASHTO.
Abdelfattah, H. F. H., K. Al-Shamsi, and K. Al-Jabri. 2016. “Evaluation of rutting potential for asphalt concrete mixes containing copper slag.” Int. J. Pavement Eng. 19 (7): 630–640. https://doi.org/10.1080/10298436.2016.1199875.
Abiola, O. S., W. K. Kupolati, E. R. Sadiku, and J. M. Ndambuki. 2014. “Utilisation of natural fiber as modifier in bituminous mixes: A review.” Constr. Build. Mater. 54 (Mar): 305–312. https://doi.org/10.1016/j.conbuildmat.2013.12.037.
ASTM. 2006. Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. ASTM C131/C131M-14. West Conshohocken, PA: ASTM.
ASTM. 2010. Standard test method for flat particles, elongated particles, or flat and elongated particles in coarse aggregate. ASTM D4791. West Conshohocken, PA: ASTM.
ASTM. 2012. Standard practice for effect of water on bituminous-coated aggregate using boiling water. ASTM D3625/D3625M. West Conshohocken, PA: ASTM.
ASTM. 2014a. Standard test method for sand equivalent value of soils and fine aggregate. ASTM D2419. West Conshohocken, PA: ASTM.
ASTM. 2014b. Standard test method for softening point of bitumen (ring-and-ball apparatus). ASTM D36/D36M. West Conshohocken, PA: ASTM.
ASTM. 2015a. Standard test method for relative density (specific gravity) and absorption of coarse aggregate. ASTM C127. West Conshohocken, PA: ASTM.
ASTM. 2015b. Standard test method for relative density (specific gravity) and absorption of fine aggregate. ASTM C128. West Conshohocken, PA: ASTM.
ASTM. 2015c. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. ASTM D4402/D4402M. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard test method for determining the percentage of fractured particles in coarse aggregate. ASTM D5821-13. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test method for ductility of asphalt materials. ASTM D113. West Conshohocken, PA: ASTM.
ASTM. 2017c. Standard test methods for uncompacted void content of fine aggregate (as influenced by particle shape, surface texture, and grading). ASTM C1252. West Conshohocken, PA: ASTM.
ASTM. 2018. Standard test method for flash and fire points by Cleveland open cup tester. ASTM D92. West Conshohocken, PA: ASTM.
ASTM. 2019. Standard test method for penetration of bituminous materials. ASTM D5/D5M. West Conshohocken, PA: ASTM.
Barros, L. M. 2017. “Deformação permanente de misturas asfálticas: Avaliação do desempenho conforme critério de flow number de misturas quentes e mornas” [Permanent deformation of asphalt mixtures: evaluation of performance assessment using the flow number criterion on hot and warm mixes]. [In Portuguese.] Master’s dissertation, Program Post-Graduation on Civil Engineering, Universidade Federal do Rio Grande do Sul.
Bindu, C. S., and K. S. Beena. 2015. “Influence of natural fibers on the compressive strength of stone matrix asphalt mixtures” Int. J. Sci. Eng. Appl. Sci. 1 (6): 445–449.
Buncher, M., and M. Anderson. 2014. Asphalt mix design methods: MS-2. 7th ed. Lexington, KY: Asphalt Institute.
Chen, H., Q. Xu, S. Chen, and Z. Zhang. 2009. “Evaluation and design of fiber-reinforced asphalt mixtures” Mater. Des. 30 (7): 2595–2603. https://doi.org/10.1016/j.matdes.2008.09.030.
Dikshith, R. S. 2012. “Laboratory investigation on stone matrix asphalt using banana fiber.” Accessed January 13, 2018. http://ethesis.nitrkl.ac.in/3785/1/dikshith_108ce017.pdf.
DNIT (Departamento Nacional de Infraestrutura de Transportes). 2006. Cimentos asfálticos de petróleo—Especificação de material. DNIT-095/06-ME. Rio de Janeiro, Brazil: DNIT.
DNIT (Departamento Nacional de Infra-Estrutura de Transportes). 2018. Pavimentação asfáltica—Misturas asfálticas—Determinação da resistência à tração por compressão diametral—Método de ensaio. DNIT-ME 136/10. Rio de Janeiro, Brazil: DNIT.
EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). 2010. A cultura da bananeira na região Norte do Brasil. [In Portuguese.] Brasília, Brazil: EMBRAPA.
Esfahani, M. A., and M. N. Jahromi. 2018. “Optimum parafibre length according to mechanical properties in hot mix asphalt.” Road Mater. Pavement Des. 1–17. https://doi.org/10.1080/14680629.2018.1527240.
Gonçalves Filho, L. C. 2011. “Utilização do pseudocaule de bananeira como substrato da fermentação alcoólica: Avaliação de diferentes processos de despolimerização.” [In Portuguese.] Master’s dissertation, Program Post-Graduation on Process Engineering, Universidade da Região de Joinville.
Jayaprabha, J. S., M. Brahmakumar, and V. B. Manilal. 2011. “Banana pseudostem characterization and its fiber property evaluation on physical and bioextraction.” J. Nat. Fibers 8 (3): 149–160. https://doi.org/10.1080/15440478.2011.601614.
Kök, B. V., and M. Akpolat. 2015. “Effects of using Sasobit and SBS on the engineering properties of bitumen and stone mastic asphalt.” J. Mater. Civ. Eng. 27 (10): 04015006. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001255.
Kumar, P., P. K. Sikdar, S. Bose, and S. Chandra. 2011. “Use of jute fiber in stone matrix asphalt.” Road Mater. Pavement Des. 5 (2): 239–249. https://doi.org/10.1080/14680629.2004.9689971.
Leal, C. L. D., and P. F. Castro. 2013. “Estudo do bagaço de cana de açúcar como aditivo em SMA.” In Proc., XIII Safety, Health and Environment World Congress, 42–46. São Paulo, Brasil: Safety, Health and Environment Research Organization.
Mahrez, A., and M. Karim. 2010. “Fatigue characteristics of stone mastic asphalt mix reinforced with fiber glass.” Int. J. Phys. Sci. 5 (12): 1840–1847.
Mourão, F. A. L. 2003. “Misturas asfálticas de alto desempenho tipo SMA” [Asphalt mixtures of high performance type SMA]. [In Portuguese.] Master’s thesis, Program Post-Graduation on Civil Engineering, Universidade Federal do Rio de Janeiro.
NAPA (National Asphalt Pavement Association Research and Education Foundation). 2009. Hot mix asphalt materials, mixture, design, and construction. Lanham, MD: NAPA.
Nascimento, L. A. H. 2008. “Nova Abordagem da Dosagem de Misturas Asfálticas Densas com Uso do Compactador Giratório e Foco na Deformação Permanente” [New approach for hot-mix asphalt design using the gyratory compactor to rutting prevention]. [In Portuguese.] Master’s dissertation, Program Post-Graduation on Civil Engineering, Universidade Federal do Rio de Janeiro/COPPE.
NBR (Norma Brasileira). 2011. Misturas asfálticas—Determinação da rigidez por compressão diametral sob carga repetida. NBR 16018. Rio de Janeiro, Brazil: NBR.
NBR (Norma Brasileira). 2016. Misturas asfálticas—Resistência à deformação permanente utilizando o ensaio uniaxial de carga repetida. NBR 16505. Rio de Janeiro, Brazil: NBR.
Neves Filho, C. L. D. 2004. “Avaliação laboratorial de misturas asfálticas sma produzidas com ligante asfalto-borracha” [In Portuguese.] Master’s dissertation, Program Post-Graduation on Civil Engineering, Escola de Engenharia de São Carlos da Universidade de São Paulo.
Oda, S., L. Fernandes, Jr., and J. S. Ildefonso. 2012. “Analysis of use of natural fibers and asphalt rubber binder in discontinuous asphalt mixtures.” Constr. Build. Mater. 26 (1): 13–20. https://doi.org/10.1016/j.conbuildmat.2011.06.030.
Roja, M. L. B., and J. M. Neves. 2002. “Caracterização de fibras de bananeira ‘nanicão’ (musa grupo AAA, ‘Giant Cavendish’) como possível matéria-prima para a produção de pasta celulósica para a fabricação de papel.” In Proc., Congresso Iberoamericano de Investigación em Celulosa y Papel. Madrid, Spain: Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo.
Rossato, F. P. 2015. “Avaliação do fenômeno de fadiga e das propriedades elásticas de misturas asfálticas com diferentes ligantes em variadas temperaturas” [Laboratory study of fatigue phenomenon and the elastic properties of asphalt concrete mixtures at different temperatures]. [In Portuguese.] Master’s dissertation, Program Post-Graduation on Civil Engineering, Universidade de Santa Maria.
Sheng, Y., H. Li, P. Guo, G. Zhao, H. Chen, and R. Xiong. 2017. “Effect of fibers on mixture design of stone matrix asphalt.” Appl. Sci. 7 (3): 297. https://doi.org/10.3390/app7030297.
Sheng, Y., B. Zhang, Y. Yan, H. Li, Z. Chen, and H. Chen. 2018. “Laboratory Investigation on the use of bamboo fiber in asphalt mixtures for enhanced performance.” Arabian J. Sci. Eng. 44 (5): 4629–4638. https://doi.org/10.1007/s13369-018-3490-x.
Subramani, T. 2012. “Experimental investigations on coir fiber reinforced bituminous mixes.” Int. J. Eng. Res. Appl. 2 (3): 1794–1804.
Uma, S., S. Kalpana, S. Sathiamoorthy, and V. Kumar. 2005. “Evaluation of commercial cultivars of banana (Musa spp.) for their suitability for the fiber industry.” Plant Genet. Resour. News Lett. 142: 29–35.
Vale, A. C. 2007. “Estudo laboratorial da viabilidade do uso de fibras de coco em misturas asfálticas do tipo SMA” [Study of the viability of the staple fibre use of coconut in asphalt mixtures SMA]. [In Portuguese.] Master’s dissertation, Program Post-Graduation on Civil Engineering, Universidade Federal do Ceará.
Vale, A. C., M. D. T. Casagrande, and J. B. Soares. 2014. “Behavior of natural fiber in stone matrix asphalt mixtures using two design methods.” J. Mater. Civ. Eng. 26 (3): 457–465. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000815.
Valença, P. M. A. 2012. “Desempenho mecânico de misturas asfálticas do tipo Stone Matrix Asphalt com uso de fibras amazônicas e agregados de resíduos de construção e demolição.” [In Portuguese.] Master’s thesis, Program Post-Graduation on Civil Engineering, Universidade Federal do Amazonas.
Weldegiorgis, M. T., and R. A. Tarefder. 2014. “Laboratory investigation of asphalt concrete dynamic modulus testing on the criteria of meeting linear viscoelastic requirements.” Road Mater. Pavement Des. 15 (3): 554–573. https://doi.org/10.1080/14680629.2014.908134.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 32Issue 1January 2020

History

Received: Feb 15, 2019
Accepted: Jun 28, 2019
Published online: Nov 12, 2019
Published in print: Jan 1, 2020
Discussion open until: Apr 12, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Laiana Ferreira da Costa [email protected]
D.Sc. Student, Engineering Pavement Laboratory, Civil Engineering Dept., Federal Univ. of Campina Grande, Campina Grande 58429-900, Brazil. Email: [email protected]
Lêda Christiane de Figueirêdo Lopes Lucena [email protected]
Professor, Engineering Pavement Laboratory, Civil Engineering Dept., Federal Univ. of Campina Grande, Campina Grande 58429-900, Brazil (corresponding author). Email: [email protected]
Adriano Elísio de Figueirêdo Lopes Lucena [email protected]
Professor, Engineering Pavement Laboratory, Civil Engineering Dept., Federal Univ. of Campina Grande, Campina Grande 58429-900, Brazil. Email: [email protected]
Ablenya Grangeiro de Barros [email protected]
M.Sc. Student, Engineering Pavement Laboratory, Civil Engineering Dept., Federal Univ. of Campina Grande, Campina Grande 58429-900, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share