Technical Papers
Oct 19, 2019

Activation of Blast Furnace Slag with Soda Production Waste

Publication: Journal of Materials in Civil Engineering
Volume 32, Issue 1

Abstract

Although the absence of portland cement (PC) in alkali-activated slag (AAS) lowers its carbon footprint, conventional alkaline activators like sodium silicate are expensive and have large environmental impacts. Soda solid waste (SSW) is an alkaline waste of the glass industry, and its disposal poses environmental problems. This study investigated the use of SSW to activate ground slag at 60°C–120°C. Strength development of mortars and heat evolution of pastes were evaluated. Hydration products were studied using X-ray diffraction and thermal analysis. Strength gain, rapid in the first 3–7 days, is attributed to formation of amorphous phases and partly crystalline calcium silicate hydrate (C-S-H). Increasing SSW content causes a weaker and broader rate of heat evolution peak in the first few hours and evolves greater total heat in the first day. SSW-activated slag pastes evolve significantly less heat up to 7 days than a typical room-temperature-cured PC paste but similar when heat is normalized by compressive strength. Mortars containing 40% slag and 60% SSW reach 20  MPa after 7 days of curing at 120°C.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abdalqader, A. F., F. Jin, and A. Al-Tabbaa. 2016. “Development of greener alkali-activated cement: Utilisation of sodium carbonate for activating slag and fly ash mixtures.” J. Cleaner Prod. 113 (Feb): 66–75. https://doi.org/10.1016/j.jclepro.2015.12.010.
Altan, E., and S. T. Erdoğan. 2012. “Alkali activation of a slag at ambient and elevated temperatures.” Cem. Concr. Compos. 34 (2): 131–139. https://doi.org/10.1016/j.cemconcomp.2011.08.003.
Amin, A. M., E. Ebied, and H. El-Didamony. 1995. “Activation of granulated slag with calcined cement kiln dust.” Silic. Indus. 60 (3–4): 109–115.
ASTM. 2015. Standard test method for flow of hydraulic cement mortar. ASTM C1437. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard specification for loadbearing concrete masonry units. ASTM C90. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard specification for nonloadbearing concrete masonry units. ASTM C129. West Conshohocken, PA: ASTM.
Aydın, S., and B. Baradan. 2014. “Effect of activator type and content on properties of alkali-activated slag mortars.” Composites Part B 57 (Feb): 166–172. https://doi.org/10.1016/j.compositesb.2013.10.001.
Bakharev, T., J. G. Sanjayan, and Y. B. Cheng. 1999. “Effect of elevated temperature curing on properties of alkali-activated slag concrete.” Cem. Concr. Res. 29 (10): 1619–1625. https://doi.org/10.1016/S0008-8846(99)00143-X.
Ben Haha, M., B. Lothenbach, G. Le Saout, and F. Winnefeld. 2011. “Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag: Part I: Effect of MgO.” Cem. Concr. Res. 41: 955–963. https://doi.org/10.1016/j.cemconres.2011.05.002.
Bernal, S. A., R. S. Nicolas, R. J. Myers, R. M. de Gutiérrez, F. Puertas, J. S. J. van Deventer, and J. L. Provis. 2014. “MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders.” Cem. Concr. Res. 57 (Mar): 33–43. https://doi.org/10.1016/j.cemconres.2013.12.003.
Bernal, S. A., R. S. Nicolas, J. S. J. van Deventer, and J. L. Provis. 2016. “Alkali-activated slag cements produced with a blended sodium carbonate/sodium silicate activator.” Adv. Cem. Res. 28 (4): 62–273. https://doi.org/10.1680/jadcr.15.00013.
Bondar, D., C. J. Lynsdale, N. B. Milestone, N. Hassani, and A. A. Ramezanianpour. 2011. “Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans.” Cem. Concr. Compos. 33 (2): 251–260. https://doi.org/10.1016/j.cemconcomp.2010.10.021.
Brykov, A. S., and V. I. Korneev. 2009. “Production and usage of powdered alkali metal silicate hydrates.” Metallurgist 52 (11–12): 648–652. https://doi.org/10.1007/s11015-009-9108-5.
CEN (European Committee for Standardization). 2005. Methods of testing cement: Part 1. Determination of strength. Eurocode 196-1. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2012. Cement—Part 1: Compositions and conformity criteria for common cements. Eurocode 197-1. Brussels, Belgium: CEN.
Chaunsali, P., and S. Peethamparan. 2013. “Influence of the composition of cement kiln dust on its interaction with fly ash and slag.” Cem. Concr. Res. 54 (Dec): 106–113. https://doi.org/10.1016/j.cemconres.2013.09.001.
Chi, M. 2012. “Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete.” Constr. Build. Mater. 35 (Oct): 240–245. https://doi.org/10.1016/j.conbuildmat.2012.04.005.
Chowdhury, U. 2013. “Alkali activated systems: Understanding the influence of curing conditions and activator type/chemistry on the mechanical strength and chemical structure of fly ash/slag systems.” M.S. thesis, Dept. of Civil, Environmental and Sustainable Engineering, Arizona State Univ.
Cicek, T., and M. Tanrıverdi. 2007. “Lime based steam autoclaved fly ash bricks.” Constr. Build. Mater. 21 (6): 1295–1300. https://doi.org/10.1016/j.conbuildmat.2006.01.005.
Erdoğan, S. T. 2014. “Are geopolymers environmentally friendly?” Cem. Concr. World 19 (Apr): 50–55.
Fernández-Jiménez, A., N. Cristelo, T. Miranda, and A. Palomo. 2017. “Sustainable alkali activated materials: Precursor and activator derived from industrial wastes.” J. Cleaner Prod. 162 (Sep): 1200–1209. https://doi.org/10.1016/j.jclepro.2017.06.151.
Fernández-Jiménez, A., J. G. Palomo, and F. Puertas. 1999. “Alkali-activated slag mortars: Mechanical strength behavior.” Cem. Concr. Compos. 29 (8): 1313–1321. https://doi.org/10.1016/S0008-8846(99)00154-4.
Guerrieri, M., J. Sanjayan, and F. Collins. 2010. “Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures.” Mater. Struct. 43 (6): 765–773. https://doi.org/10.1617/s11527-009-9546-3.
Habert, G., J. D. E. De Lacaillerie, and N. Roussel. 2011. “An environmental evaluation of geopolymer based concrete production: Reviewing current research trends.” J. Cleaner Prod. 19 (11): 1229–1238. https://doi.org/10.1016/j.jclepro.2011.03.012.
Hong, J., W. Chen, Y. Wang, C. Yu, and X. Xu. 2014. “Life cycle assessment of caustic soda production: A case study in China.” J. Cleaner Prod. 66 (Mar): 113–120. https://doi.org/10.1016/j.jclepro.2013.10.009.
Ismail, I., S. A. Bernal, J. L. Provis, S. Hamdan, and J. S. J. van Deventer. 2013. “Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure.” Mater. Struct. 46 (3): 361–373. https://doi.org/10.1617/s11527-012-9906-2.
Ismail, I., S. A. Bernal, J. L. Provis, R. San Nicolas, S. Hamdan, and J. S. J. van Deventer. 2014. “Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash.” Cem. Concr. Compos. 45 (Jan): 125–135. https://doi.org/10.1016/j.cemconcomp.2013.09.006.
Jin, F., K. Gu, and A. Al-Tabbaa. 2014. “Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste.” Constr. Build. Mater. 51 (Jan): 395–404. https://doi.org/10.1016/j.conbuildmat.2013.10.081.
Juenger, M. C. G., F. Winnefeld, J. L. Provis, and J. H. Ideker. 2011. “Advances in alternative cementitious binders.” Cem. Concr. Res. 41 (12): 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012.
Kasikowski, T., R. Buczkowski, B. Dejewska, K. Peszyńska-Białczyk, E. Lemanowska, and B. Igliński. 2004. “Utilization of distiller waste from ammonia-soda processing.” J. Cleaner Prod. 12 (7): 759–769. https://doi.org/10.1016/S0959-6526(03)00120-3.
Ke, X., S. A. Bernal, and J. L. Provis. 2016. “Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides.” Cem. Concr. Res. 81 (Mar): 24–37. https://doi.org/10.1016/j.cemconres.2015.11.012.
Kesim, A. G., M. Tokyay, İ. Ö. Yaman, and A. Öztürk. 2013. “Properties of alinite cement produced by using soda sludge.” Adv. Cem. Res. 25 (2): 104–111. https://doi.org/10.1680/adcr.11.00040.
Konsta-Gdoutos, M. S., and S. P. Shah. 2003. “Hydration and properties of novel blended cements based on cement kiln dust and blast furnace slag.” Cem. Concr. Res. 33 (8): 1269–1276. https://doi.org/10.1016/S0008-8846(03)00061-9.
Kuo, W., H.-Y. Wang, and C.-Y. Shu. 2014. “Engineering properties of cementless concrete produced from GGBFS and recycled desulfurization slag.” Constr. Build. Mater. 63 (30): 186–196. https://doi.org/10.1016/j.conbuildmat.2014.04.017.
Kuznetsova, T. V., A. A. Shatov, M. A. Dryamina, and R. N. Badertdinov. 2004. “Use of wastes from soda production to produce nonshrinking oil-well cement.” Inorganic Synth. Ind. Inorganic Chem. Russ. https://doi.org/10.1007/s11167-005-0374-0.
Lachemi, M., M. Şahmaran, K. M. A. Hossain, A. Lotfy, and M. Shehata. 2010. “Properties of controlled low-strength materials incorporating cement kiln dust and slag.” Cem. Concr. Compos. 32 (8): 623–629. https://doi.org/10.1016/j.cemconcomp.2010.07.011.
Lloyd, R. R., J. L. Provis, and J. S. J. van Deventer. 2012. “Acid resistance of inorganic polymer binders. 1. Corrosion rate.” Mater. Struct. 45 (1): 1–14. https://doi.org/10.1617/s11527-011-9744-7.
Lothenbach, B., and A. Gruskovnjak. 2007. “Hydration of alkali-activated slag: Thermodynamic modelling.” Adv. Cem. Res. 19 (2): 81–92. https://doi.org/10.1680/adcr.2007.19.2.81.
Luna-Galiano, Y., C. Fernández-Pereira, and M. Izquierdo. 2016. “Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength mater.” Materiales de Construcción 66 (324): e098. https://doi.org/10.3989/mc.2016.10215.
Luukkonen, T., Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, and M. Illikainen. 2018. “Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar.” J. Cleaner Prod. 187 (Jun): 171–179. https://doi.org/10.1016/j.jclepro.2018.03.202.
Mehrotra, V. P., A. S. R. Sai, and P. C. Kapur. 1982. “Plaster of Paris activated supersulfated slag cement.” Cem. Concr. Res. 12 (4): 463–473. https://doi.org/10.1016/0008-8846(82)90061-8.
Mejía, J. M., R. M. de Gutiérrez, and F. Puertas. 2013. “Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems.” Materiales de Construcción 63 (311): 361–375. https://doi.org/10.3989/mc.2013.04712.
Morsy, M. S., Y. A. Al-Salloum, H. Abbas, and S. H. Alsayed. 2012. “Behavior of blended cement mortars containing nanometakaolin at elevated temperatures.” Constr. Build. Mater. 35 (Oct): 900–905. https://doi.org/10.1016/j.conbuildmat.2012.04.099.
Murmu, M., and S. P. Singh. 2015. “Strength characteristics of lime-activated cement.” Adv. Cem. Res. 27 (5): 268–277. https://doi.org/10.1680/adcr.13.00097.
Nedeljkovic, M., K. Arbi Ghanmi, Y. Zuo, and G. Ye. 2016. “Microstructural and mineralogical analysis of alkali activated fly ash-slag pastes.” In Proc., 3rd Int. RILEM Conf. on Microstructure Related Durability of Cementitious Composites: Nanjing, China, RILEM Publications S.A.R.L., edited by C. Miao, W. Sun, J. Liu, H. Chen, G. Ye, and K. van Breugel, 1–10. Paris: RILEM Publications.
Pacheco-Torgal, F., J. A. Labrincha, C. Leonelli, A. Palomo, and P. Chindaprasirt. 2015. Handbook of alkali-activated cements, mortars and concretes. Oxford, UK: Woodhead.
Pan, Z., L. Cheng, Y. Lu, and N. Yang. 2002. “Hydration products of alkali-activated slag-red mud cementitious material.” Cem. Concr. Res. 32 (3): 357. https://doi.org/10.1016/S0008-8846(01)00683-4.
Park, H., Y. Jeong, J.-H. Jeong, and J. E. Oh. 2016. “Strength development and hydration behavior of self-activation of commercial ground granulated blast-furnace slag mixed with purified water materials.” Materials 9 (3): 185. https://doi.org/10.3390/ma9030185.
Passuello, A., E. D. Rodríguez, E. Hirt, M. Longhi, S. A. Bernal, J. L. Provis, and A. P. Kirchheim. 2017. “Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators.” J. Cleaner Prod. 166 (10): 680–689. https://doi.org/10.1016/j.jclepro.2017.08.007.
Provis, J. L. 2014a. “Geopolymers and other alkali activated materials: Why, how, and what?” Mater. Struct. 47: 11–25. https://doi.org/10.1617/s11527-013-0211-5.
Provis, J. L. 2014b. “Green concrete or red herring? Future of alkali-activated materials.” Adv. Appl. Ceram. 113 (8): 472–477. https://doi.org/10.1179/1743676114Y.0000000177.
Provis, J. L., and S. A. Bernal. 2014. “Geopolymers and related alkali-activated materials.” Ann. Rev. Mater. Res. 44: 299–327. https://doi.org/10.1146/annurev-matsci-070813-113515.
Provis, J. L., A. Palomo, and C. Shi. 2015. “Advances in understanding alkali-activated materials.” Cem. Concr. Res. 78 (Part A): 110–125. https://doi.org/10.1016/j.cemconres.2015.04.013.
Puertas, F., B. González-Fonteboa, I. González-Taboada, M. M. Alonso, M. Torres-Carrasco, G. Rojo, and F. Martínez-Abella. 2018. “Alkali-activated slag concrete: Fresh and hardened behavior.” Cem. Concr. Compos. 85 (Jan): 22–31. https://doi.org/10.1016/j.cemconcomp.2017.10.003.
Puertas, F., R. Gutiérrez, A. Fernández-Jiménez, S. Delvasto, and J. Maldonado. 2002. “Alkaline cement mortars. Chemical resistance to sulfate and seawater attack.” Materiales de Construcción, 52 (267): 55–71. https://doi.org/10.3989/mc.2002.v52.i267.326.
Puertas, F., and M. Torres-Carrasco. 2014. “Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterization.” Cem. Concr. Res. 57 (Mar): 95–104. https://doi.org/10.1016/j.cemconres.2013.12.005.
Rashad, A. M. 2013. “A comprehensive overview about the influence of different additives on the properties of alkali-activated slag: A guide for civil engineer.” Constr. Build. Mater. 47 (Oct): 29–55. https://doi.org/10.1016/j.conbuildmat.2013.04.011.
Şahin, M., M. Mahyar, and S. T. Erdoğan. 2016. “Mutual activation of blast furnace slag and a high-calcium fly ash rich in free lime and sulfates.” Constr. Build. Mater. 126 (Nov): 466–475. https://doi.org/10.1016/j.conbuildmat.2016.09.064.
Sakulich, A. R. 2009. “Characterization of environmentally-friendly alkali activated slag.” Ph.D. dissertation, Dept. of Materials Science and Engineering, Drexel Univ.
Sharma, K. M., P. S. Sharma, and D. Yadov. 1996. “Problems and prospects of use of soda ash sludge in cement industry.” In Proc., 5th National Council for Cement and Building Materials Seminar, VI-7-14. New Delhi, India: Ministry of Commerce and Industry, Government of India.
Shekhovtsova, J., E. P. Kearsley, and M. Kovtun. 2014. “Effect of activator dosage, water-to-binder-solids ratio, temperature and duration of elevated temperature curing on the compressive strength of alkali-activated fly ash cement pastes.” J. S. Afr. Inst. Civ. Eng. 56 (3): 44–52.
Shi, C., A. Jiménez-Fernández, and A. Palomo. 2011. “New cements for the 21st century: The pursuit of an alternative to portland cement.” Cem. Concr. Res. 41 (7): 750–763. https://doi.org/10.1016/j.cemconres.2011.03.016.
Shi, C., P. Krivenko, and D. Roy. 2006. Alkali-activated cements and concretes. London: Taylor & Francis.
Singh, B., G. Ishwarya, M. Gupta, and S. K. Bhattacharyya. 2015. “Geopolymer concrete: A review of some recent developments.” Constr. Build. Mater. 85 (Jun): 78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036.
Song, S., D. Sohn, H. M. Jennings, and T. O. Mason. 2000. “Hydration of alkali-activated ground granulated blast furnace slag.” J. Mater. Sci. 35 (1): 249–257. https://doi.org/10.1023/A:1004742027117.
Steinhauser, G. 2008. “Cleaner production in the Solvay process: General strategies and recent developments.” J. Cleaner Prod. 16 (7): 833–841. https://doi.org/10.1016/j.jclepro.2007.04.005.
Taylor, H. F. W. 1990. Cement chemistry. London: Academic Press.
Torres-Carrasco, M., and F. Puertas. 2015. “Waste glass in the geopolymer preparation. Mechanical and microstructural characterization.” J. Cleaner Prod. 90 (Mar): 397–408. https://doi.org/10.1016/j.jclepro.2014.11.074.
Torres-Carrasco, M., M. Tognonvi, A. Tagnit-Hamou, and F. Puertas. 2015. “Durability of alkali-activated slag concretes prepared using waste glass as alternative activator.” ACI Mater. J. 112 (6): 791–800. https://doi.org/10.14359/51687903.
Uçal, G. O., M. Mahyar, M. Tokyay, and İ. Ö. Yaman. 2017. “Low-energy alinite cement from soda sludge waste.” In Proc., 10th ACI/RILEM Int. Conf. on Cementitious Materials and Alternative Binders for Sustainable Concrete, Special Publication. Paris: RILEM Publication.
USGS. 2018. “Mineral commodity summaries, synthetic soda ash.” Accessed May 30, 2018. https://minerals.usgs.gov/minerals/pubs/commodity/soda_ash/mcs-2018-sodaa.pdf.
van Deventer, J. S. J., J. L. Provis, and P. Duxson. 2012. “Technical and commercial progress in the adoption of geopolymer cement.” Miner. Eng. 29 (Mar): 89–104. https://doi.org/10.1016/j.mineng.2011.09.009.
Venkatarama Reddy, B. V., and K. Gourav. 2011. “Strength of lime-fly ash compacts using different curing techniques and gypsum additive.” Mater. Struct. 44 (10): 1793–1808.
Villaquirán-Caicedo, M. A., R. M. de Gutiérrezde Gutiérrez, and N. C. Gallego. 2017. “A novel Mk-based geopolymer composite activated with rice husk ash and KOH: Performance at high temperature.” Mater. Constr. 67 (326): e117. https://doi.org/10.3989/mc.2017.02316.
Wang, S.-D., and K. L. Scrivener. 1995. “Hydration products of alkali activated slag cement.” Cem. Concr. Res. 25 (3): 561–571. https://doi.org/10.1016/0008-8846(95)00045-E.
Yeğinobali, A. 1985. “Studies on the possible uses of soda industry waste as a construction material.” In Appropriate waste management for developing countries, edited by K. Curi, 692. Washington, DC: Island Press
.
Zhou, H., X. Wu, Z. Xu, and M. Tang. 1993. “Kinetic study on hydration of alkali-activated slag.” Cem. Concr. Res. 23 (6): 1253–1258. https://doi.org/10.1016/0008-8846(93)90062-E.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 32Issue 1January 2020

History

Received: Aug 13, 2018
Accepted: Jun 28, 2019
Published online: Oct 19, 2019
Published in print: Jan 1, 2020
Discussion open until: Mar 19, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Aykut Bilginer [email protected]
Research Assistant, Dept. of Civil Engineering, Middle East Technical Univ., Ankara 06800, Turkey (corresponding author). Email: [email protected]
Oğulcan Canbek [email protected]
Formerly, M.Sc. Student, Dept. of Civil Engineering, Middle East Technical Univ., Ankara 06800, Turkey. Email: [email protected]
Sinan Turhan Erdoğan [email protected]
Professor, Dept. of Civil Engineering, Middle East Technical Univ., Ankara 06800, Turkey. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share