Technical Papers
Mar 28, 2019

Substitution of Coarse Aggregates with Mollusk-Shell Waste in Acoustic-Absorbing Concrete

Publication: Journal of Materials in Civil Engineering
Volume 31, Issue 6

Abstract

Most of the aggregates in construction material come nowadays from the quarrying of natural resources, and their consumption tends to rise. The aim of this study was to evaluate the total substitution of traditional natural coarse aggregates with alternative, renewable resources, such as mollusk shell waste from the aquaculture industry, to manufacture a recycled porous concrete and its possible use in sound-absorbing barriers for road traffic. Two different shells, separately or as a mix, were used in this research work: Peruvian scallop and Mediterranean mussel. In addition, two different particle size distributions, smaller than 2 mm and between 2 and 7 mm, were used. Acoustic absorption, open porosity, density, mechanical resistance to compression and bending, and resistance to freeze-thaw cycles, along with leaching properties, were studied. The results revealed that specimens formed using any kind of mollusk shell waste with a particle size between 2 and 7 mm exhibited a 40% increase weighted acoustic absorption coefficient over porous concrete specimens made with river gravel. For particles of the same size, the acoustic absorption assessment index showed absorption over 4 dB in 12-cm thickness. In addition, the mechanical properties analyzed showed better values in all specimens made with shell waste than in conventional porous concrete specimens. In the specimens manufactured of mollusk shell waste with a particle size between 2 and 7 mm, compression strength was twice that of conventional porous concrete.

Get full access to this article

View all available purchase options and get full access to this article.

References

ACH. 2018. “Noise barriers.” Accessed June 18, 2018. http://www.panelesach.com/pantallas-barreras-acusticas-ACH.
Arenas, C. 2013. “Recycling coal bottom ash in construction materials: Technical specifications of bottom ash based sound absorbing porous concrete applied in highway noise barriers.” Ph.D. thesis, Departamento de Ingeniería Química y Ambiental, Universidad de Sevilla.
Arenas, C., C. Leiva, L. F. Vilches, and H. Cifuentes. 2013. “Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers.” Waste Manage. 33 (11): 2316–2321. https://doi.org/10.1016/j.wasman.2013.07.008.
Arenas, C., C. Leiva, L. F. Vilches, H. Cifuentes, and M. Rodríguez-Galán. 2015. “Technical specifications for highway noise barriers made of coal bottom ash-based sound absorbing concrete.” Constr. Build. Mater. 95 (1): 585–591. https://doi.org/10.1016/j.conbuildmat.2015.07.107.
Arenas, C., Y. Luna-Galiano, C. Leiva, L. F. Vilches, F. Arroyo, R. Villegas, and C. Fernández-Pereira. 2017. “Development of a fly ash-based geopolymeric concrete with construction and demolition wastes as aggregates in acoustic barriers.” Constr. Build. Mater. 134 (1): 433–442. https://doi.org/10.1016/j.conbuildmat.2016.12.119.
Arenas, C., L. F. Vilches, C. Leiva, B. Alonso-Fariñas, and M. Rodríguez-Galán. 2016. “Recycling ceramic industry wastes in sound absorbing materials.” Materiales construcción 66 (324): 106. https://doi.org/10.3989/mc.2016.10615.
ASTM. 2000. Test methods for specific gravity of soil solids by water pycnometer. ASTM D854. West Conshohocken, PA: ASTM.
ASTM. 2002. Test method for obtaining and testing drilled cores and sawed beams of concrete. ASTM C42/C42M. West Conshohocken, PA: ASTM.
ASTM. 2004. Standard test method for organic impurities in fine aggregates for concrete. ASTM C40. West Conshohocken, PA: ASTM.
ASTM. 2009. Standard test method for sound absorption and sound absorption coefficients by the reverberation room method. ASTM C423. West Conshohocken, PA: ASTM.
ASTM. 2012. Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system. ASTM E1050. West Conshohocken, PA: ASTM.
ASTM. 2013. Standard method for major and minor elements in coal and coke ash by atomic absorption. ASTM D3682. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test method for flexural strength of hydraulic-cement mortars. ASTM C348. West Conshohocken, PA: ASTM.
ASTM. 2016. Test method for compressive strength of cylindrical concrete specimens. ASTM C39/C39M. West Conshohocken, PA: ASTM.
Ballester, P., I. Mármol, J. Morales, and L. Sánchez. 2007. “Use of limestone obtained from waste of the mussel cannery industry for the production of mortars.” Cem. Concr. Res. 37 (4): 559–564. https://doi.org/10.1016/j.cemconres.2007.01.004.
Barros, C., P. Bello, M. Bao, and J. Torrado. 2009. “From waste to commodity: Transforming shells into high purity calcium carbonate.” J. Cleaner Prod. 17 (3): 400–407. https://doi.org/10.1016/j.jclepro.2008.08.013.
Barros, C., P. Bello, V. Valiño, M. Bao, and J. Arias. 2007. “Odours prevention and control in the shell waste valorisation.” In Proc., Int. Symp. on EcoTopia ISETS 07, 890–895. Aichi Prefecture, Japan: Nagoya Univ.
Bogas, J. A., J. De Brito, and D. Ramos. 2016. “Freeze-thaw resistance of concrete produced with fine recycled concrete aggregates.” J. Cleaner Prod. 115: 294–306. https://doi.org/10.1016/j.jclepro.2015.12.065.
BSI (British Standards Institution). 1998. Road traffic noise reducing devices—Test method for determining acoustic performance. Part 3: Normalized traffic noise spectrum. EN 1793-3. London: BSI.
BSI (British Standards Institution). 2003. Characterization of Waste: Leaching compliance test for leaching of granular waste material and sludge. EN 12457-4. London: BSI.
BSI (British Standards Institution). 2006. Natural stone test methods: Determination of real density and apparent density, and of total and open porosity. EN 1936. London: BSI.
BSI (British Standards Institution). 2008. Testing hardened concrete—Part 9: Freeze-thaw resistance: Scaling. EN-12390-9. London: BSI.
BSI (British Standards Institution). 2011a. Cement—Part 1: Composition, specifications and conformity criteria for common cements. EN 197-1. London: BSI.
BSI (British Standards Institution). 2011b. Road traffic noise reducing devices: Nonacoustic performance. General safety and environmental requirements. EN 1794-2. London: BSI.
BSI (British Standards Institution). 2017. Road traffic noise reducing devices—Test method for determining the acoustic performance - Part 1: Intrinsic characteristics of sound absorption under diffuse sound field conditions. EN 1793-1. London: BSI.
BSI (British Standards Institution). 2018. Road traffic noise reducing devices—Nonacoustic performance. Part 1: Mechanical performance and stability requirements. EN 1794-1. London: BSI.
Chandrappa, A. K., and K. P. Biligiri. 2016. “Pervious concrete as a sustainable pavement material—Research findings and future prospects: A state-of-the-art review.” Constr. Build. Mater. 111: 262–274. https://doi.org/10.1016/j.conbuildmat.2016.02.054.
Deo, O., and N. Neithalath. 2010. “Compressive behavior of pervious concretes and a quantification of the influence of random pore structure features.” Mater. Sci. Eng. A 528 (1): 402–412. https://doi.org/10.1016/j.msea.2010.09.024.
Deo, O., and N. Neithalath. 2011. “Compressive response of pervious concretes proportioned for desired porosities.” Constr. Build. Mater. 25 (11): 4181–4189. https://doi.org/10.1016/j.conbuildmat.2011.04.055.
De Paula, S. M., and M. Silveira. 2009. “Studies on molluscan shells: Contributions from microscopic and analytical methods.” Micron 40 (7): 669–690. https://doi.org/10.1016/j.micron.2009.05.006.
Desarnaulds, V., E. Costanzo, A. Carvalho, and B. Arlaud. 2005. “Sustainability of acoustic materials and acoustic characterization of sustainable materials.” In Vol. 1 of Proc., 12th Int. Congress on Sound and Vibration, 331–338. Auburn, AL: International Institute of Acoustic and Vibration.
DSQD (Decree on Soil Quality). 2007. Houdende regels inzake de kwaliteit van de bodem, Besluit bodemkwaliteit [Containing rules on the quality of the soil, soil quality decree]. Amsterdam, Netherlands: Staatsblad.
European Union. 2002. 2003/33/EC: Council decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Official Journal L 011, 16/01/2003 P. 0027–0049. Brussels, Belgium: European Union.
Flores Medina, N., D. Flores-Medina, and F. Hernández-Olivares. 2016. “Influence of fibers partially coated with rubber from tire recycling as aggregate on the acoustical properties of rubberized concrete.” Constr. Build. Mater. 129: 25–36. https://doi.org/10.1016/j.conbuildmat.2016.11.007.
Freitas de Alvarenga, R. M., B. Menezes Galindo, C. F. Helpa, and S. R. Soares. 2012. “The recycling of oyster shells: An environmental analysis using life cycle assessment.” J. Environ. Manage. 106: 102–109. https://doi.org/10.1016/j.jenvman.2012.04.01rc7.
Guo, M., A. Bhasin, and Y. Tan. 2017. “Effect of mineral fillers adsorption on rheological and chemical properties of asphalt binder.” Constr. Build. Mater. 141: 152–159. https://doi.org/10.1016/j.conbuildmat.2017.02.051.
Iribarren, D., M. T. Moreira, and G. Feijoo. 2010. “Implementing by-product management into the life cycle assessment of the mussel sector.” Resour. Conserv. Recycl. 54 (12): 1219–1230. https://doi.org/10.1016/j.resconrec.2010.03.017.
ISO. 1998. Acoustics—Sound absorbers for use in buildings—Rating of sound absorption. ISO 11654. Geneva: ISO.
ISO. 2002. Acoustics determination of sound absorption coefficient and impedance or admittance by the impedance tube. Part II: Transfer function method. ISO-10534-2. Geneva: ISO.
Jung, J-H., K-S. Yoo, J. H-G. Kim, and B-H. Shon. 2007. “Reuse of waste oyster-shells as a SO2/NOx removal absorbent.” J. Ind. Eng. Chem. 13 (4): 512–517.
Karagol, F., R. Demirboga, and W. H. Khushefati. 2015. “Behavior of fresh and hardened concretes with antifreeze admixtures in deep-freeze low temperatures and exterior winter conditions.” Constr. Build. Mater. 76: 388–395. https://doi.org/10.1016/j.conbuildmat.2014.12.011.
Kim, H. K., and H. K. Lee. 2010. “Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete.” Appl. Acoust. 71 (7): 607–615. https://doi.org/10.1016/j.apacoust.2010.02.001.
Kim, J., and S. Yi. 2002. “Application of size effect to compressive strength of concrete members.” Sadhana 27 (4): 467–484. https://doi.org/10.1007/BF02706995.
Kwon, H. B., C. W. Lee, B. S. Jun, J. Yun, S. Y. Weon, and B. Koopman. 2004. “Recycling waste oyster shells for eutrophication control.” Resour. Conserv. Recycl. 41 (1): 75–82. https://doi.org/10.1016/j.resconrec.2003.08.005.
Lee, C. H., D. K. Lee, M. A. Ali, and P. J. Kim. 2008. “Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials.” Waste Manage. 28 (12): 2702–2708. https://doi.org/10.1016/j.wasman.2007.12.005.
Leiva, C., C. Arenas, L. F. Vilches, F. Arroyo, and Y. Luna-Galiano. 2017. “Assessing durability properties of noise barriers made of concrete incorporating bottom ash as aggregates.” Eur. J. Environ. Civ. Eng. 1–12. https://doi.org/10.1080/19648189.2017.1355852.
Leiva, C., L. F. Vilches, C. Arenas, S. Delgado, and C. Fernández-Pereira. 2012. “Potencial recycling of bottom ash and fly ashes in acoustic mortars and concrete.” ACI Mater. J. 109 (5): 529–535.
Marin, F., G. Luquet, B. Marie, and D. Medakovic. 2007. “Molluscan shell proteins: Primary structure, origin, and evolution.” In Current topics in developmental biology. Burlington, NJ: Elsevier.
Martínez-García, C., B. González-Fonteboa, F. Martínez-Abella, and D. Carro-López. 2017. “Performance of mussel shell as aggregate in plain concrete.” Constr. Build. Mater. 139: 570–583. https://doi.org/10.1016/j.conbuildmat.2016.09.091.
Ministerio de Fomento. 2008. Instrucción de Hormigón Estructural. Madrid, España: Ministerio de Fomento S.G.T. Centro de Publicaciones.
Miramand, P., and D. Bentley. 1992. “Concentration and distribution of heavy metals in tissues of two cephalopods, Eledone cirrhosa and Sepia officinalis, from the French coast of the English Channel.” Mar. Biol. 114 (3): 407–414. https://doi.org/10.1007/BF00350031.
Moon, D. H., K. H. Cheong, A. Koutsospyros, Y. Y. Chang, Y. S. Hyun, Y. S. Ok, and J. H. Park. 2016. “Assessment of waste oyster shells and coal mine drainage sludge for the stabilization of As-, Pb-, and Cu-contaminated soil.” Environ. Sci. Pollut. Res. 23 (3): 2362–2370. https://doi.org/10.1007/s11356-015-5456-9.
Neithalath, N. 2004. “Development and characterization of acoustically efficient cementations materials.” Ph.D. thesis, Purdue Univ.
NEN (Netherlands Standardization Institute). 1995. Leaching characteristics of solid earthy and stony building and waste materials—Leaching test: Determination of the leaching of inorganic components from granular materials with the column test. NEN 7345. Delft, Netherlands: NEN.
Neves, N. M., and J. F. Mano. 2005. “Structure/mechanical behavior relationships in crossed-lamellar sea shells.” Mater. Sci. Eng. C 25 (2): 113–118. https://doi.org/10.1016/j.msec.2005.01.004.
Nguyen, D. H., M. Boutouil, N. Sebaibi, L. Leleyter, and F. Baraud. 2013. “Valorization of seashell by-products in pervious concrete pavers.” Constr. Build. Mater. 49: 151–160. https://doi.org/10.1016/j.conbuildmat.2013.08.017.
Osuna-Mascaro, A., T. Cruz-Bustos, and B. Marie. 2016. “Heavy metals in mollusk shells: A quick method for their detection.” Key Eng. Mater. 672: 340–345. https://doi.org/10.4028/www.scientific.net/KEM.672.340.
Otsuki, N., S. Miyazato, and W. Yodsudjai. 2003. “Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete.” J. Mater. Civ. Eng. 15 (5): 443–451. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(443).
Palomar, I., G. Barluenga, and J. Puentes. 2015. “Lime-cement mortars for coating with improved thermal and acoustic performance.” Constr. Build. Mater. 75: 306–314. https://doi.org/10.1016/j.conbuildmat.2014.11.012.
Palpandi, C., and K. Kesavan. 2012. “Heavy metal monitoring using Nerita crepidularia-mangrove mollusc from the Vellar estuary, southeast coast of India.” Asian Pac. J. Trop. Biomed. 2 (1): S358–S367. https://doi.org/10.1016/S2221-1691(12)60188-9.
Pan Rodo. 2018. “Noise barriers.” Accessed June 18, 2018. https://www.obralia.com/dir/minisites/catalogos/419295/catalogo.pdf.
Paridah, M. T., A. H. Juliana, Y. A. El-Shekeil, M. Jawaid, and O. Y. Alothman. 2014. “Measurement of mechanical and physical properties of particleboard by hybridization of kenaf with rubberwood particles.” Measurement 56: 70–80. https://doi.org/10.1016/j.measurement.2014.06.019.
Park, S. B., D. S. Seo, and J. Lee. 2005. “Studies on the sound absorption characteristics of porous concrete based on the content of recycled aggregate and target void ratio.” Cem. Concr. Res. 35 (9): 1846–1854. https://doi.org/10.1016/j.cemconres.2004.12.009.
Pastor, J. M., L. D. García, S. Quintana, and J. Peña. 2014. “Glass reinforced concrete panels containing recycled tyres: Evaluation of the acoustic properties for their use as sound barriers.” Constr. Build. Mater. 54: 541–549. https://doi.org/10.1016/j.conbuildmat.2013.12.040.
Sarı, B., G. Nemli, M. Baharğlu, S. Bardak, and E. Zekovic. 2012. “The role of solid content of adhesive and panel density on the dimensional stability and mechanical properties of particleboard.” J. Compos. Mater. 47 (10): 1247–1255. https://doi.org/10.1177/0021998312446503.
Siddique, R. 2013. “Compressive strength, water absorption, sorptivity, abrasion resistance, and permeability of self-compacting concrete containing coal bottom ash.” Constr. Build. Mater. 47: 1444–1450. https://doi.org/10.1016/j.conbuildmat.2013.06.081.
SINIA (Sistema Nacional de Información Ambiental). 2012. “National environmental information system of Chile.” Mapa de ruido de Santiago. Accessed January 15, 2017. http://www.sinia.cl/1292/w3-article-52084.html.
Souza, R. V., L. H. P. Garbossa, C. J. A. Campos, L. F. N. Vianna, A. Vanz, and G. S. Rupp. 2016. “Metals and pesticides in commercial bivalve mollusc production areas in the North and South Bays, Santa Catarina (Brazil).” Mar. Pollut. Bull. 105 (1): 377–384. https://doi.org/10.1016/j.marpolbul.2016.02.024.
Tan, Y., and M. Guo. 2014. “Interfacial thickness and interaction between asphalt and mineral fillers.” Mater. Struct. 47 (4): 605–614. https://doi.org/10.1617/s11527-013-0083-8.
Tang, X., and X. Yan. 2017. “Acoustic energy absorption properties of fibrous materials: A review.” Compos. Part A Appl. Sci. Manuf. 101: 360–380. https://doi.org/10.1016/j.compositesa.2017.07.002.
Tian, L., X. Tian, Y. Wang, G. Hu, and L. Ren. 2014. “Anti-wear properties of the molluscan shell Scapharca subcrenata: Influence of surface morphology, structure and organic material on the elementary wear process.” Mater. Sci. Eng. C 42: 7–14. https://doi.org/10.1016/j.msec.2014.05.010.
Wu, H., Z. Liu, B. Sun, and J. Yin. 2016. “Experimental investigation on freeze-thaw durability of portland cement pervious concrete (PCPC).” Constr. Build. Mater. 117: 63–71. https://doi.org/10.1016/j.conbuildmat.2016.04.130.
Xu, G., W. Shen, X. Huo, Z. Yang, J. Zang, W. Zhang, and X. Ji. 2018. “Investigation on the properties of porous concrete as road base material.” Constr. Build. Mater. 158: 141–148. https://doi.org/10.1016/j.conbuildmat.2017.09.151.
Yan, N., and X. Chen. 2015. “Sustainability: Don’t waste seafood waste.” Nature 524 (7564): 155–157. https://doi.org/10.1038/524155a.
Yang, E. I., S. T. Yi, and Y. M. Leem. 2005. “Effect of oyster shell substituted for fine aggregate on concrete characteristics. Part I: Fundamental properties.” Cem. Concr. Res. 35 (11): 2175–2182. https://doi.org/10.1016/j.cemconres.2005.03.016.
Yang, Z., W. Ma, W. Shen, and M. Zhou. 2008. “The aggregate gradation for the porous concrete pervious road base material.” J. Wuhan Univ. Technol. Mater. Sci. Ed. 23 (3): 391–394. https://doi.org/10.1007/s11595-007-3391-4.
Yao, Z., M. Xia, H. Li, T. Chen, Y. Ye, and H. Zheng. 2014. “Bivalve shell: Not an abundant useless waste but a functional and versatile biomaterial.” Crit. Rev. Environ. Sci. Technol. 44 (22): 2502–2530. https://doi.org/10.1080/10643389.2013.829763.
Yeih, W., T. C. Fu, J. J. Chang, and R. Huang. 2015. “Properties of pervious concrete made with air-cooling electric arc furnace slag as aggregates.” Constr. Build. Mater. 93: 737–745. https://doi.org/10.1016/j.conbuildmat.2015.05.104.
Yuxuan, C., Q. L. Yu, and H. J. H. Bruwer. 2017. “Acoustic performance and microstructural analysis of bio-based lightweight concrete containing miscanthus.” Constr. Build. Mater. 157: 839–851. https://doi.org/10.1016/j.conbuildmat.2017.09.161.
Zhong, R., M. Xu, R. Vieira Netto, and K. Wille. 2016. “Influence of pore tortuosity on hydraulic conductivity of pervious concrete: Characterization and modeling.” Constr. Build. Mater. 125: 1158–1168. https://doi.org/10.1016/j.conbuildmat.2016.08.060.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 6June 2019

History

Received: Mar 26, 2018
Accepted: Dec 3, 2018
Published online: Mar 28, 2019
Published in print: Jun 1, 2019
Discussion open until: Aug 28, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Begoña Peceño [email protected]
Assistant Professor, Escuela de Prevención de Riesgos y Medioambiente, Facultad de Ciencias del Mar, Universidad Católica del Norte, 1281 Larrondo, Coquimbo, Chile (corresponding author). Email: [email protected]
Celia Arenas [email protected]
Researcher, Grupo de Ingeniería de Residuos, Escuela Técnica Superior de Ingeniería, Departmento de Ingeniería Química y Ambiental, Universidad de Sevilla, Camino de los Descubrimientos s/n, Seville E-41092, Spain. Email: [email protected]
Bernabé Alonso-Fariñas [email protected]
Associate Professor, Grupo de Ingeniería Ambiental y de Procesos, Escuela Técnica Superior de Ingeniería, Departmento de Ingeniería Química y Ambiental, Universidad de Sevilla, Camino de los Descubrimientos s/n, Seville E-41092, Spain. Email: [email protected]
Carlos Leiva [email protected]
Professor, Grupo de Ingeniería de Residuos, Escuela Técnica Superior de Ingeniería, Departmento de Ingeniería Química y Ambiental, Universidad de Sevilla, Camino de los Descubrimientos s/n, Seville E-41092, Spain. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share