Technical Notes
Jan 30, 2019

Mode I and Mode II Granite Fractures after Distinct Thermal Shock Treatments

Publication: Journal of Materials in Civil Engineering
Volume 31, Issue 4

Abstract

In this study, the effect of thermal shock (TS) on the mechanical properties of granite is investigated. Two schemes are performed to provide different cooling rates for the TS processes. Decreasing trend of dry density and P-wave velocity with ascending TS temperatures are observed. The porosity has an increasing trend with ascending TS temperatures. The effects of TS on the mechanical responses are investigated through Brazilian tests on the granite specimens of the cracked straight through Brazilian disc (CSTBD) under Mode I and Mode II loading. Mode I and Mode II fracture toughness values are obtained according to the mechanical tests, and a power relation is proposed to fit the fracture toughness values with respect to TS temperatures. Scanning electron microscope (SEM) is adopted to observe the fracture surfaces of the TS-treated specimens after the tests. Distinct features such as intergranular fracture are identified on the fracture surface of a water-cooled specimen, which indicates material deterioration to a greater extent as compared with that of an air-cooled specimen.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was supported by the State Key Research Development Program of China (No. 2016YFC0600706), and National Natural Science Foundation of China (NSFC, Grant Nos. 11402311, 51608537, and 51774325).

References

Atkinson, C., R. E. Smelser, and J. Sanchez. 1982. “Combined mode fracture via the cracked Brazilian disk test.” Int. J. Fracture. 18 (4): 279–291. https://doi.org/10.1007/BF00015688.
Awaji, H., and S. Sato. 1978. “Combined mode fracture toughness measurement by the disk test.” J. Eng. Mater. Technol. 100 (2): 175–182. https://doi.org/10.1115/1.3443468.
Backers, T., and O. Stephansson. 2012. “ISRM suggested method for the determination of Mode II fracture toughness.” Rock Mech. Rock Eng. 45 (6): 1011–1022. https://doi.org/10.1007/s00603-012-0271-9.
Breitkreuz, C. 2013. “Spherulites and lithophysae—200 years of investigation on high-temperature crystallization domains in silica-rich volcanic rocks.” Bull. Volcanol. 75 (4): 705. https://doi.org/10.1007/s00445-013-0705-6.
Brotóns, V., R. Tomás, S. Ivorra, and J. C. Alarcón. 2013. “Temperature influence on the physical and mechanical properties of a porous rock: San Julian’s calcarenite.” Eng. Geol. 167: 117–127. https://doi.org/10.1016/j.enggeo.2013.10.012.
Chen, C. S., E. Pan, and B. Amadei. 1998. “Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method.” Int. J. Rock Mech. Min. Sci. 35 (2): 195–218. https://doi.org/10.1016/S0148-9062(97)00330-6.
Chen, Y., J. Ni, W. Shao, and R. Azzam. 2012. “Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading.” Int. J. Rock Mech. Min. 56 (15): 62–66. https://doi.org/10.1016/j.ijrmms.2012.07.026.
Ferrero, A. M., and P. Marini. 2001. “Experimental studies on the mechanical behaviour of two thermal cracked marbles.” Rock Mech. Rock Eng. 34 (1): 57–66. https://doi.org/10.1007/s006030170026.
Fowell, R. J. 1995. “Suggested method for determining Mode-I fracture-toughness using cracked chevron-notched Brazilian disc (CCNBD) specimens.” Int. J. Rock Mech. Min. 32 (1): 57–64. https://doi.org/10.1016/0148-9062(94)00015-U.
Ghaffarian, R. 2001. “Thermal cycling/shock behavior of CSP assemblies.” NASA Electron. Parts Packag. Program 7 (2): 5.
Ghobadi, M. H., and R. Babazadeh. 2015. “Experimental studies on the effects of cyclic freezing-thawing, salt crystallization, and thermal shock on the physical and mechanical characteristics of selected sandstones.” Rock Mech. Rock Eng. 48 (3): 1001–1016. https://doi.org/10.1007/s00603-014-0609-6.
Hale, P. A. 2003. “A laboratory investigation of the effects of cyclic heating and cooling, wetting and drying, and freezing and thawing on the compressive strength of selected sandstones. Environ.” Eng. Geosci. 9 (2): 117–130. https://doi.org/10.2113/9.2.117.
Hall, K., and M. O. André. 2001. “New insights into rock weathering from high-frequency rock temperature data: An Antarctic study of weathering by thermal stress.” Geomorphology 41 (1): 23–35. https://doi.org/10.1016/S0169-555X(01)00101-5.
Hall, K., and C. E. Thorn. 2014. “Thermal fatigue and thermal shock in bedrock: An attempt to unravel the geomorphic processes and products.” Geomorphology 206: 1–13. https://doi.org/10.1016/j.geomorph.2013.09.022.
Hettema, M. H. H., K. H. A. A. Wolf, and C. J. D. Pater. 1998. “The influence of steam pressure on thermal spalling of sedimentary rock: Theory and experiments.” Int. J. Rock Mech. Min. Sci. 35 (1): 3–15. https://doi.org/10.1016/S0148-9062(97)00318-5.
Kataoka, M., Y. Obara, and M. Kuruppu. 2015. “Estimation of fracture toughness of anisotropic rocks by semi-circular bend (SCB) tests under water vapor pressure.” Rock Mech. Rock Eng. 48 (4): 1353–1367. https://doi.org/10.1007/s00603-014-0665-y.
Kristinsdóttir, L. H., Ó. G. Flóvenz, K. Árnason, D. Bruhn, H. Milsch, E. Spangenberg, and J. Kulenkampff. 2010. “Electrical conductivity and P-wave velocity in rock samples from high-temperature Icelandic geothermal fields.” Geothermics 39 (1): 94–105. https://doi.org/10.1016/j.geothermics.2009.12.001.
Krynine, D. P., and W. R. Judd. 1957. Principles of engineering geology and geotechnic, 728. New York: McGraw-Hill.
Kuruppu, M. D., Y. Obara, M. R. Ayatollahi, K. P. Chong, and T. Funatsu. 2014. “ISRM-suggested method for determining the mode i static fracture toughness using semi-circular bend specimen.” Rock Mech. Rock Eng. 47 (1): 267–274. https://doi.org/10.1007/s00603-013-0422-7.
Liu, H. Y., S. Q. Kou, P. A. Lindqvist, and C. A. Tang. 2007. “Numerical modelling of the heterogeneous rock fracture process using various test techniques.” Rock Mech. Rock Eng. 40 (2): 107–144. https://doi.org/10.1007/s00603-006-0091-x.
Liu, S., and J. Xu. 2015. “An experimental study on the physico-mechanical properties of two post-high-temperature rocks.” Eng. Geol. 185: 63–70. https://doi.org/10.1016/j.enggeo.2014.11.013.
Mahanta, B., T. N. Singh, and P. G. Ranjith. 2016. “Influence of thermal treatment on Mode I fracture toughness of certain Indian rocks.” Eng. Geol. 210: 103–114. https://doi.org/10.1016/j.enggeo.2016.06.008.
Mardoukhi, A., Y. Mardoukhi, M. Hokka, and V. Kuokkala. 2017. “Effects of heat shock on the dynamic tensile behavior of granitic rocks.” Rock Mech. Rock Eng. 50 (5): 1171–1182. https://doi.org/10.1007/s00603-017-1168-4.
Mirkin, L. I., S. A. Shesterikov, M. V. Yumashev, and M. A. Yumasheva. 2006. “Instability of thermal fracture under the conditions of constrained deformation.” Mater. Sci. 42 (6): 778–785. https://doi.org/10.1007/s11003-006-0145-y.
Nasseri, M. H. B., B. Mohanty, and P. Y. F. Robin. 2005. “Characterization of microstructures and fracture toughness in five granitic rocks.” Int. J. Rock Mech. Min. Sci. 42 (3): 450–460. https://doi.org/10.1016/j.ijrmms.2004.11.007.
Nasseri, M. H. B., A. Schubnel, and R. P. Young. 2007. “Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite.” Int. J. Rock Mech. Min. 44 (4): 601–616. https://doi.org/10.1016/j.ijrmms.2006.09.008.
Ouchterlony, F. 1988. “Suggested methods for determining the fracture toughness of rock.” Int. J. Rock Mech. Min. 25 (2): 71–96. https://doi.org/10.1016/0148-9062(88)91871-2.
Ozguven, A., and Y. Ozcelik. 2013. “Investigation of some property changes of natural building stones exposed to fire and high heat.” Constr. Build. Mater. 38 (2): 813–821. https://doi.org/10.1016/j.conbuildmat.2012.09.072.
Peng, G. F., S. H. Bian, Z. Q. Guo, J. Zhao, X. L. Peng, and Y. C. Jiang. 2008. “Effect of thermal shock due to rapid cooling on residual mechanical properties of fiber concrete exposed to high temperatures.” Constr. Build. Mater. 22 (5): 948–955. https://doi.org/10.1016/j.conbuildmat.2006.12.002.
Richter, D., and G. Simmons. 1974. “Thermal expansion behavior of igneous rocks.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 11 (10): 403–411. https://doi.org/10.1016/0148-9062(74)91111-5.
Singh, R., T. N. Singh, and R. K. Bajpai. 2018. “The investigation of twin tunnel stability: Effect of spacing and diameter.” J. Geol. Soc. India 91 (5): 563–568. https://doi.org/10.1007/s12594-018-0905-y.
Sirdesai, N. N., B. Mahanta, P. G. Ranjith, and T. N. Singh. 2017a. “Effects of thermal treatment on physico-morphological properties of Indian fine-grained sandstone.” Bull. Eng. Geol. Environ. 2017: 1–15. https://doi.org/10.1007/s10064-017-1149-6.
Sirdesai, N. N., A. Singh, L. K. Sharma, R. Singh, and T. N. Singh. 2018. “Determination of thermal damage in rock specimen using intelligent techniques.” Eng. Geol. 239: 179–194. https://doi.org/10.1016/j.enggeo.2018.03.027.
Sirdesai, N. N., T. N. Singh, P. G. Ranjith, and R. Singh. 2017b. “Effect of varied durations of thermal treatment on the tensile strength of red sandstone.” Rock Mech. Rock Eng. 50 (1): 205–213. https://doi.org/10.1007/s00603-016-1047-4.
Smart, C. M., and J. Wakabayashi. 2009. “Hot and deep: Rock record of subduction initiation and exhumation of high-temperature, high-pressure metamorphic rocks, Feather River ultramafic belt, California.” Lithos 113 (1–2): 292–305. https://doi.org/10.1016/j.lithos.2009.06.012.
Sousa, L. M. O., L. M. Suárez Del Río, L. Calleja, V. G. Ruiz De Argandoña, and A. R. Rey. 2005. “Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites.” Eng. Geol. 77 (1–2): 153–168. https://doi.org/10.1016/j.enggeo.2004.10.001.
Tiskatine, R., A. Eddemani, L. Gourdo, B. Abnay, A. Ihlal, A. Aharoune, and L. Bouirden. 2016. “Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage.” Appl. Energy 171: 243–255. https://doi.org/10.1016/j.apenergy.2016.03.061.
Wang, P., J. Xu, S. Liu, and H. Wang. 2016. “Dynamic mechanical properties and deterioration of red-sandstone subjected to repeated thermal shocks.” Eng. Geol. 212: 44–52. https://doi.org/10.1016/j.enggeo.2016.07.015.
Wang, P., J. Y. Xu, X. Y. Fang, M. Wen, G. H. Zheng, and P. X. Wang. 2017. “Dynamic splitting tensile behaviors of red-sandstone subjected to repeated thermal shocks: Deterioration and micro-mechanism.” Eng. Geol. 223: 1–10. https://doi.org/10.1016/j.enggeo.2017.04.012.
Wang, Y., Y. Xia, and S. Dong. 2004. “Stress intensity factors for central cracked circular disk subjected to compression.” Eng. Fract. Mech. 71 (7): 1135–1148. https://doi.org/10.1016/S0013-7944(03)00120-6.
Yao, W., Y. Xu, W. Wang, and P. Kanopolous. 2016. “Dependence of Dynamic Tensile Strength of Longyou Sandstone on Heat-Treatment Temperature and Loading Rate.” Rock Mech. Rock Eng. 49 (10): 3899–3915. https://doi.org/10.1007/s00603-015-0895-7.
Yatsu, E. 1988. The nature of weathering: An introduction. Tokyo: Sozosha.
Yavuz, H. 2011. “Effect of freeze-thaw and thermal shock weathering on the physical and mechanical properties of an andesite stone.” Bull. Eng. Geol. Environ. 70 (2): 187–192. https://doi.org/10.1007/s10064-010-0302-2.
Yavuz, H., R. Altindag, S. Sarac, I. Ugur, and N. Sengun. 2006. “Estimating the index properties of deteriorated carbonate rocks due to freeze-thaw and thermal shock weathering.” Int. J. Rock Mech. Min. 43 (5): 767–775. https://doi.org/10.1016/j.ijrmms.2005.12.004.
Yin, T., L. Bai, X. Li, X. Li, and S. Zhang. 2018. “Effect of thermal treatment on the mode I fracture toughness of granite under dynamic and static coupling load.” Eng. Fract. Mech. 199: 143–158. https://doi.org/10.1016/j.engfracmech.2018.05.035.
Yin, T., X. Li, K. Xia, and S. Huang. 2012. “Effect of thermal treatment on the dynamic fracture toughness of Laurentian granite.” Rock Mech. Rock Eng. 45 (6): 1087–1094. https://doi.org/10.1007/s00603-012-0240-3.
Zhang, W., Q. Sun, S. Hao, J. Geng, and C. Lv. 2016. “Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment.” Appl. Therm. Eng. 98: 1297–1304. https://doi.org/10.1016/j.applthermaleng.2016.01.010.
Zhang, Z., Y. Shao, and F. Song. 2010. “Characteristics of crack patterns controlling the retained strength of ceramics after thermal shock.” Front. Mater. Sci. China 4 (3): 251–254. https://doi.org/10.1007/s11706-010-0089-x.
Zhang, Z. X., J. Yu, S. Q. Kou, and P. A. Lindqvist. 2001. “Effects of high temperatures on dynamic rock fracture.” Int. J. Rock Mech. Min. 38 (2): 211–225. https://doi.org/10.1016/S1365-1609(00)00071-X.
Zharikov, A. V., E. B. Lebedev, A. M. Dorfman, and V. M. Vitovtova. 2000. “Effect of saturating fluid composition on the rock microstructure, porosity, permeability and Vp under high pressure and temperature.” Phys. Chem. Earth Part A Solid Earth Geod. 25 (2): 215–218. https://doi.org/10.1016/S1464-1895(00)00034-X.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 4April 2019

History

Received: Apr 3, 2018
Accepted: Aug 31, 2018
Published online: Jan 30, 2019
Published in print: Apr 1, 2019
Discussion open until: Jun 30, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, School of Resources and Safety Engineering, Central South Univ., Changsha 410083, China. Email: [email protected]
Zhuoyao Zhang [email protected]
Master Student, School of Resources and Safety Engineering, Central South Univ., Changsha 410083, China. Email: [email protected]
Assistant Professor, School of Civil Engineering, Central South Univ., Changsha 410075, China (corresponding author). Email: [email protected]
Associate Professor, School of Resources and Safety Engineering, Central South Univ., Changsha 410083, China. Email: [email protected]
Professor, School of Resources and Safety Engineering, Central South Univ., Changsha 410083, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share