Technical Papers
Aug 1, 2018

Behavior of High-Strength Polypropylene Fiber-Reinforced Self-Compacting Concrete Exposed to High Temperatures

Publication: Journal of Materials in Civil Engineering
Volume 30, Issue 11

Abstract

In this study we analyzed the use of high-performance structural concrete reinforced with polypropylene fibers in applications requiring long exposure times to high temperatures, such as thermal energy storage systems. We analyzed the behavior of the concrete at different temperatures (hot tests: 100°C, 300°C, 500°C and 700°C), cooled-down states (cold tests) and exposure times (6, 24, and 48 h). We also experimentally determined the thermogravimetric analysis, fracture behavior, compressive strength, Young’s modulus, and tensile strength of concrete. Subsequently, we performed a comprehensive analysis of the thermal and mechanical behavior of high-performance concrete under different thermal conditions. We applied longer exposure times to broaden the available results on the behavior of high-performance fiber-reinforced concrete when subjected to high temperatures. Results show that, once thermal and moisture equilibriums are reached, exposure time does not have any influence on mechanical properties. They also provide useful information about the influence of high temperatures on the different parameters of fiber-reinforced concrete and its application for thermal energy storage structures.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors acknowledge the financial support provided to this study by the Spanish Ministry of Economy and Competitiveness under project BIA2016-75431-R.

References

ACI (American Concrete Institute). 1991. Fracture mechanics of concrete: Concepts, models and determination of material properties. ACI Committee 446. Detroit: ACI.
Alarcon-Ruiz, L., G. Platret, E. Massieu, and A. Ehrlacher. 2005. “The use of thermal analysis in assessing the effect of temperature on a cement paste.” Cem. Concr. Res. 35 (3): 609–613. https://doi.org/10.1016/j.cemconres.2004.06.015.
Alonso, M. C., J. Vera-Agullo, L. Guerreiro, V. Flor-Laguna, M. Sanchez, and M. Collares-Pereira. 2016. “Calcium aluminate based cement for concrete to be used as thermal energy storage in solar thermal electricity plants.” Cem. Concr. Res. 82 (Apr): 74–86. https://doi.org/10.1016/j.cemconres.2015.12.013.
Alotto, P., M. Guarnieri, and F. Moro. 2014. “Redox flow batteries for the storage of renewable energy: A review.” Renewable Sustainable Energy Rev. 29 (Jan): 325–335. https://doi.org/10.1016/j.rser.2013.08.001.
Bamonte, P., and G. Pietro. 2016. “High-temperature behavior of SCC in compression: Comparative study on recent experimental campaigns.” J. Mater. Civ. Eng. 28 (3): 4015141. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001378.
Barros, J., E. Pereira, and S. Santos. 2007. “Lightweight panels of steel fiber-reinforced self-compacting concrete.” J. Mater. Civ. Eng. 19 (4): 295–304. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:4(295).
Bazant, Z. P., and J. Planas. 1998. Fracture and size effect in concrete and other quasi brittle materials. Boca Raton, FL: CRC Press.
Bei, S., and L. Zhixiang. 2016. “Investigation on spalling resistance of ultra-high-strength concrete under rapid heating and rapid cooling.” Case Stud. Constr. Mater. 4 (Jun): 146–153. https://doi.org/10.1016/j.cscm.2016.04.001.
CEN (European Committee for Standardization). 2008. Cement. Part 1: Composition, specifications and conformity creiteria from common cements, AENOR. EN197-1:2000/A3. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2009a. Testing hardened concrete. Part 3: Compressive strength of test specimens, AENOR. EN12390-3. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2009b. Testing hardened concrete. Part 6: Tensile splitting strength of test specimens, AENOR. EN12390-6. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2014. Testing hardened concrete. Part 13: Determination of secant modulus of elasticity in compression, AENOR. EN12390-13. Brussels, Belgium: CEN.
Chauhan, A., and R. P. Saini. 2014. “A review on integrated renewable energy system based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control.” Renewable Sustainable Energy Rev. 38 (Oct): 99–120. https://doi.org/10.1016/j.rser.2014.05.079.
Cifuentes, H., F. García, O. Maeso, and F. Medina. 2013. “Influence of the properties of polypropylene fibres on the fracture behaviour of low-, normal- and high-strength FRC.” Constr. Build. Mater. 45 (Aug): 130–137. https://doi.org/10.1016/j.conbuildmat.2013.03.098.
Cifuentes, H., C. Leiva, F. Medina, and C. Fernández-Pereira. 2012. “Effects of fibers and rice husk ash on properties of heated high-strength concrete.” Mag. Concr. Res. 64 (5): 457–470. https://doi.org/10.1680/macr.11.00087.
Cifuentes, H., M. Lozano, T. Holusova, F. Medina, S. Seitl, and A. Fernandez-Canteli. 2017. “Modified disk-shaped compact tension test for measuring concrete fracture properties.” Int. J. Concr. Struct. Mater. 11 (2): 215–228. https://doi.org/10.1007/s40069-017-0189-4.
EFNARC (European Federation of National Associations Representing Producers and Applicators of Specialist Building Products for Concrete). 2005. The European guidelines for self compacting concrete, 63. Farnham, UK: EFNARC.
Elices, M., G. V Guinea, and J. Planas. 1992. “Measurement of the fracture energy using three-point bend tests. Part 3: Influence of cutting the P-d tail.” Mater. Struct. 25 (6): 327–334. https://doi.org/10.1007/BF02472591.
Fenollera, M., J. L. Míguez, I. Goicoechea, J. Lorenzo, and M. Á. Álvarez. 2013. “The influence of phase change materials on the properties of self-compacting concrete.” Materials 6 (8): 3530–3546. https://doi.org/10.3390/ma6083530.
Gencel, O., C. Ozel, W. Brostow, and G. Martínez-Barrera. 2011. “Mechanical properties of self-compacting concrete reinforced with polypropylene fibres.” Mater. Res. Innovations 15 (3): 216–225. https://doi.org/10.1179/143307511X13018917925900.
Guan, J., X. Hu, and Q. Li. 2016. “In-depth analysis of notched 3-p-b concrete fracture.” Eng. Fract. Mech. 165 (Oct): 57–71. https://doi.org/10.1016/j.engfracmech.2016.08.020.
Guan, J., X. Hu, X. Yao, Q. Wang, Q. Li, and Z. Wu. 2017. “Fracture of 0.1 and 2 m long mortar beams under three-point-bending.” Mater. Des. 133 (Nov): 363–375. https://doi.org/10.1016/j.matdes.2017.08.005.
Guinea, G. V., J. Planas, and M. Elices. 1992. “Measurement of the fracture energy using three-point bend tests. Part 1: Influence of experimental procedures.” Mater. Struct. 25 (4): 212–218. https://doi.org/10.1007/BF02473065.
Herrmann, U., B. Kelly, and H. Price. 2004. “Two-tank molten salt storage for parabolic trough solar power plants.” Energy 29 (5–6): 883–893. https://doi.org/10.1016/S0360-5442(03)00193-2.
Hillerborg, A., M. Modéer, and P. E. Petersson. 1976. “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements.” Cem. Concr. Res. 6 (6): 773–781. https://doi.org/10.1016/0008-8846(76)90007-7.
Hu, X., J. Guan, Y. Wang, A. Keating, and S. Yang. 2017. “Comparison of boundary and size effect models based on new developments.” Eng. Fract. Mech. 175 (Apr): 146–167. https://doi.org/10.1016/j.engfracmech.2017.02.005.
Kang, J., H. Yoon, W. Kim, V. Kodur, Y. Shin, and H. Kim. 2016. “Effect of wall thickness on thermal behaviors of RC walls under fire conditions.” Int. J. Concr. Struct. Mater. 10 (S3): 19–31. https://doi.org/10.1007/s40069-016-0164-5.
Karihaloo, B. L., H. M. Abdalla, and T. Imjai. 2003. “A simple method for determining the true fracture energy of concrete.” Mag. Concr. Res. 55 (5): 471–481. https://doi.org/10.1680/macr.2003.55.5.471.
Kodur, V. 2014. “Properties of concrete at elevated temperatures.” ISRN Civ. Eng. 2014: 1–15. https://doi.org/10.1155/2014/468510.
Laing, D., D. Lehmann, M. Fiß, and C. Bahl. 2009. “Test results of concrete thermal energy storage for parabolic trough power plants.” J. Sol. Energy Eng. 131 (4): 041007. https://doi.org/10.1115/1.3197844.
Liu, X., G. Ye, G. Deschutter, Y. Yuan, and L. Taerwe. 2008. “On the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high-performance cement paste.” Cem. Concr. Res. 38 (4): 487–499. https://doi.org/10.1016/j.cemconres.2007.11.010.
Memon, S. A., H. Z. Cui, H. Zhang, and F. Xing. 2015. “Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete.” Appl. Energy 139 (Feb): 43–55. https://doi.org/10.1016/j.apenergy.2014.11.022.
Mohamedbhai, G. T. G. 1986. “Effect of exposure time and rates of heating and cooling on residual strength of heated concrete.” Mag. Concr. Res. 38 (136): 151–158. https://doi.org/10.1680/macr.1986.38.136.151.
Nielsen, C. V., and N. Bicanic. 2003. “Residual fracture energy of high-performance and normal concrete subject to high temperatures.” Mater. Struct. 36 (262): 515–521. https://doi.org/10.1617/13880.
Noumowé, A., H. Carré, A. Daoud, and H. Toutanji. 2006. “High-strength self-compacting concrete exposed to fire test.” J. Mater. Civ. Eng. 18 (6): 754–758. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:6(754).
Pielichowska, K., and K. Pielichowski. 2014. “Phase change materials for thermal energy storage.” Prog. Mater Sci. 65 (Aug): 67–123. https://doi.org/10.1016/j.pmatsci.2014.03.005.
Planas, J. 2007. Experimental determination of the stress-crack opening curve for concrete in tension. Bagneux, France: RILEM.
Ramezanianpour, A. A., M. Esmaeili, S. A. Ghahari, and M. H. Najafi. 2013. “Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers.” Constr. Build. Mater. 44 (Jul): 411–418. https://doi.org/10.1016/j.conbuildmat.2013.02.076.
RILEM (Réunion Internationale des Laboratoires et Experts des Matériaux, systèmes de construction et ouvrages). 1985. “TCM-85: Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams.” Mater. Struct. 18 (106): 287–290. https://doi.org/10.1007/BF02498757.
Rosselló, C., M. Elices, and G. V. Guinea. 2006. “Fracture of model concrete: Part 2. Fracture energy and characteristic length.” Cem. Concr. Res. 36 (7): 1345–1353. https://doi.org/10.1016/j.cemconres.2005.04.016.
Shah S. P. 1990. “Determination of fracture parameters (KIc-s and CTODc) of plain concrete using three-point bend tests.” Mater. Struct. 23 (6): 457–460.
Sideris, K. K., and P. Manita. 2013. “Residual mechanical characteristics and spalling resistance of fiber reinforced self-compacting concretes exposed to elevated temperatures.” Constr. Build. Mater. 41 (Apr): 296–302. https://doi.org/10.1016/j.conbuildmat.2012.11.093.
Srikar, G., G. Anand, and S. Suriya Prakash. 2016. “A study on residual compression behavior of structural fiber reinforced concrete exposed to moderate temperature using digital image correlation.” Int. J. Concr. Struct. Mater. 10 (1): 75–85. https://doi.org/10.1007/s40069-016-0127-x.
Tao, J., Y. Yuan, and L. Taerwe. 2010. “Compressive strength of self-compacting concrete during high-temperature exposure.” J. Mater. Civ. Eng. 22 (10): 1005–1011. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000102.
Tufail, M., K. Shahzada, B. Gencturk, and J. Wei. 2017. “Effect of elevated temperature on mechanical properties of limestone, quartzite and granite concrete.” Int. J. Concr. Struct. Mater. 11 (1): 17–28. https://doi.org/10.1007/s40069-016-0175-2.
Vilches, L. F., C. Leiva, J. Vale, and C. Fernánndez-Pereira. 2005. “Insulating capacity of fly ash pastes used for passive protection against fire.” Cem. Concr. Compos. 27 (7–8): 776–781. https://doi.org/10.1016/j.cemconcomp.2005.03.001.
Wang, Y., X. Hu, L. Liang, and W. Zhu. 2016. “Determination of tensile strength and fracture toughness of concrete using notched 3-p-b specimens.” Eng. Fract. Mech. 160: 67–77. https://doi.org/10.1016/j.engfracmech.2016.03.036.
Yang, Z., and S. V. Garimella. 2010. “Thermal analysis of solar thermal energy storage in a molten-salt thermocline.” Solar Energy 84 (6): 974–985. https://doi.org/10.1016/j.solener.2010.03.007.
Zhang, B., and N. Bicanic. 2006. “Fracture energy of high-performance concrete at high temperatures up to 4508C: the effects of heating temperatures and testing conditions (hot and cold).” Mag. Concr. Res. 58 (5): 277–288. https://doi.org/10.1680/macr.2006.58.5.277.
Zoalfakar, S. H., M. A. Elsissy, Y. B. Shaheen, and A. A. Hamada. 2016. “Multiresponse optimization of postfire residual properties of fiber-reinforced high-performance concrete.” J. Mater. Civ. Eng. 28 (10): 4016111. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001622.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 30Issue 11November 2018

History

Received: Nov 9, 2017
Accepted: May 2, 2018
Published online: Aug 1, 2018
Published in print: Nov 1, 2018
Discussion open until: Jan 1, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

José D. Ríos
Ph.D. Student, Grupo de Estructuras, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, Andalucia 41092, Spain.
Associate Professor, Grupo de Estructuras, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, Andalucia 41092, Spain (corresponding author). ORCID: https://orcid.org/0000-0001-6302-418X. Email: [email protected]
Carlos Leiva, Ph.D.
Associate Professor, Grupo de Ingeniería de Residuos, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, Andalucia 41092, Spain.
Celia García, Ph.D.
Grupo de Ingeniería de Residuos, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, Andalucia 41092, Spain.
María D. Alba, Ph.D.
Professor, Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla 41092, Spain.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share