Technical Papers
Aug 13, 2018

Degradation of Natural Fiber in Cement Composites Containing Diatomaceous Earth

Publication: Journal of Materials in Civil Engineering
Volume 30, Issue 11

Abstract

This paper reports the results of an investigation carried out to understand the influence of two different diatomaceous earths on the service life of natural fibers in cement composites. Deterioration of the embedded natural fiber was determined using two methods: development of flexural properties of natural fiber-reinforced mortar under accelerated aging, and direct investigation of fiber strength and components by means of micro-force tensile testing and thermogravimetric analysis. By replacing 20% cement with natural mineral admixture (diatomaceous earths), the cement hydration was enhanced and 24.4% calcium hydroxide was consumed, generating a mild environment for the natural reinforcement. The tensile strength of the aged natural fiber after 20 wetting and drying cycles was improved by 3.8 times. Due to fiber degradation, the flexural strength and toughness of fiber-reinforced cement mortar decreased by 90% and 98%, respectively, after 10 wetting and drying cycles. By incorporating diatomaceous earths, after 10 wetting and drying cycles, flexural strength and toughness as high as 5.3 and 7.9 times, respectively, of those of the control group were observed, suggesting that the degradation in the flexural properties of the cement composites was effectively mitigated. The influence of diatomaceous earths on the hydration of cement and its correlations with the durability of the fiber and composites were also studied. Investigations of the deterioration in interfacial bonding between cement matrices and aged natural fibers and the optimization of the pozzolanic activity of diatomaceous earths in cementitious systems are recommended as future work.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research was partially supported by the United States National Science Foundation (NSF) under the Award No. 1642488. The authors would like to express their sincere thanks to Prof. Christian Meyer for his guidance and experimental support in related work. Mr. Hagh Mckee from Bast Fibers LLC, Cresskill, New Jersey, is acknowledged for supplying sisal fibers. The authors also wish to thank Prof. Mike Ward’s research group at New York University for their support of thermogravimetric analysis.

References

Agopyan, V., H. Savastano Jr., V. M. John, and M. A. Cincotto. 2005. “Developments on vegetable fibre–cement based materials in São Paulo, Brazil: An overview.” Cem. Concr. Compos. 27 (5): 527–536. https://doi.org/10.1016/j.cemconcomp.2004.09.004.
Ali, M. 2012. “Natural fibres as construction materials.” J. Civ. Eng. Constr. Technol. 3 (3): 80–89. https://doi.org/10.5897/JCECT11.100.
Andonian, R., Y. W. Mai, and B. Cotterell. 1979. “Strength and fracture properties of cellulose fibre reinforced cement composites.” Int. J. Cem. Compos. 1 (4): 151–158. https://doi.org/10.1520/D3822_D3822M-14.
ASTM. 2014. Standard test method for tensile properties of single textile fibers. ASTM-D3822. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test methods for sampling and testing non-asbestos fiber-cement flat sheet, roofing and siding shingles, and clapboards. ASTM-C1185. West Conshohocken, PA: ASTM.
Aziz, M. A., P. Paramasivam, and S. L. Lee. 1984. Concrete reinforced with natural fibres. Surrey, UK: Surrey University Press.
Belaadi, A., A. Bezazi, M. Bourchak, and F. Scarpa. 2013. “Tensile static and fatigue behaviour of sisal fibres.” Mater. Des. 46: 76–83. https://doi.org/10.1016/j.matdes.2012.09.048.
Bilba, K., and M. A. Arsene. 2008. “Silane treatment of bagasse fiber for reinforcement of cementitious composites.” Compos. Part A: Appl. Sci. Manuf. 39 (9): 1488–1495. https://doi.org/10.1016/j.compositesa.2008.05.013.
Bonavetti, V. L., V. F. Rahhal, and E. F. Irassar. 2001. “Studies on the carboaluminate formation in limestone filler-blended cements.” Cem. Concr. Res. 31 (6): 853–859. https://doi.org/10.1016/S0008-8846(01)00491-4.
Campbell, M. D., and R. S. P. Coutts. 1980. “Wood fibre-reinforced cement composites.” J Mater. Sci. 15 (8): 1962–1970. https://doi.org/10.1007/BF00550621.
Canovas, M. F., N. H. Selva, and G. M. Kawiche. 1992. “New economical solutions for improvement of durability of portland cement mortars reinforced with sisal fibres.” Mater. Struct. 25 (7): 417–422. https://doi.org/10.1007/BF02472258.
Chakar, F. S., and A. J. Ragauskas. 2004. “Review of current and future softwood kraft lignin process chemistry.” Ind. Crops Prod. 20 (2): 131–141. https://doi.org/10.1016/j.indcrop.2004.04.016.
Charoenvai, S., J. Khedari, J. Hirunlabh, M. Daguenet, and D. Quenard. 2005. “Impact of rice husk ash on the performance of durian fiberbased construction materials.” In Proc., 10DBMC Int. Conf. on Durability of Building Materials and Components. Rotterdam, Netherlands: In-House Publishing.
Chen, H. 2014. “Chemical composition and structure of natural lignocellulose.” In Biotechnology of lignocellulose: Theory and practice, 25–71. Dordrecht, Netherlands: Springer.
Cheng-Yi, H., and R. F. Feldman. 1985. “Hydration reactions in portland cement-silica fume blends.” Cem. Concr. Res. 15 (4): 585–592. https://doi.org/10.1016/0008-8846(85)90056-0.
Chhetri, A. B. 2008. Nature science and sustainable technology research progress. New York: Nova Science Publishers.
Claramunt, J., M. Ardanuy, J. A. García-Hortal, and R. D. T. Filho. 2011. “The hornification of vegetable fibers to improve the durability of cement mortar composites.” Cem. Concr. Compos. 33 (5): 586–595. https://doi.org/10.1016/j.cemconcomp.2011.03.003.
Cooke, A. M. 2000. “Durability of autoclaved cellulose fiber cement composites.” In Proc., 7th Int. Inorganic-Bonded Wood and Fiber Composite Materials Conf., Moscow, Idaho: Univ. of Idaho.
Coutts, R. S. P. 1983. “Flax fibres as a reinforcement in cement mortars.” Int. J. Cem. Compos. Lightweight Concrete 5 (4): 257–262. https://doi.org/10.1016/0262-5075(83)90067-2.
Coutts, R. S. P., and P. Kightly. 1982. “Microstructure of autoclaved refined wood-fibre cement mortars.” J. Mater. Sci. 17 (6): 1801–1806. https://doi.org/10.1007/BF00540809.
D’Almeida, A. L. F. S., J. A. M. Filho, and R. D. T. Filho. 2009. “Use of curaua fibers as reinforcement in cement composites.” Chem. Eng. Trans. 17: 1717–1722. https://doi.org/10.3303/CET0917287.
de Andrade Silva, F., B. Mobasher, and R. D. Toledo Filho. 2010. “Fatigue behavior of sisal fiber reinforced cement composites.” Mater. Sci. Eng.: A 527 (21–22): 5507–5513. https://doi.org/10.1016/j.msea.2010.05.007.
de Andrade Silva, F., B. Mobasher, and R. D. Toledo Filho. 2011. “Impact behavior of sisal fiber cement composites under flexural load.” Mater. J. 108 (2): 168–177.
Degirmenci, N., and A. Yilmaz. 2009. “Use of diatomite as partial replacement for portland cement in cement mortars.” Constr. Build. Mater. 23 (1): 284–288. https://doi.org/10.1016/j.conbuildmat.2007.12.008.
de Gutiérrez, R. M., L. N. Díaz, and S. Delvasto. 2005. “Effect of pozzolans on the performance of fiber-reinforced mortars.” Cem. Concr. Compos. 27 (5): 593–598. https://doi.org/10.1016/j.cemconcomp.2004.09.010.
Deschner, F., F. Winnefeld, B. Lothenbach, S. Seufert, P. Schwesig, S. Dittrich, F. Goetz-Neunhoeffer, and J. Neubauer. 2012. “Hydration of portland cement with high replacement by siliceous fly ash.” Cem. Concr. Res. 42 (10): 1389–1400. https://doi.org/10.1016/j.cemconres.2012.06.009.
Dolley, T. P. 2000. Diatomite. Reston, VA: US Geological Survey.
Fengyan, W., L. Xianghui, L. Yinong, and X. Zhongzi. 2006. “Effect of pozzolanic reaction products on alkali-silica reaction.” J. Wuhan Univ. Technol. -Mater. Sci. Ed. 21 (3): 168–171. https://doi.org/10.1007/BF02840910.
Filho, R. D. T. 1997. “Natural fibre reinforced mortar composites: Experimental characterisation.” Ph.D. dissertation, Catholic Univ. of Rio de Janeiro.
Fragoulis, D., M. G. Stamatakis, D. Papageorgiou, and E. Chaniotakis. 2005. “The physical and mechanical properties of composite cements manufactured with calcareous and clayey Greek diatomite mixtures.” Cem. Concr. Compos. 27 (2): 205–209. https://doi.org/10.1016/j.cemconcomp.2004.02.008.
Gellerstedt, G., and E. Lindfors. 1984. “Structural changes in lignin during kraft pulping. Part 4. Phenolic hydroxyl groups in wood and kraft pulps.” Svensk Papperstidning 87 (15): R115–R117. https://doi.org/10.1515/hfsg.1984.38.3.151.
Ghrici, M., S. Kenai, and M. Said-Mansour. 2007. “Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements.” Cem. Concr. Compos. 29 (7): 542–549. https://doi.org/10.1016/j.cemconcomp.2007.04.009.
Gram, H. E. 1983. Durability of natural fiber in concrete. Stockholm, Sweden: Swedish Cement and Concrete Research Institute.
Gruyaert, E., N. Robeyst, and N. De Belie. 2010. “Study of the hydration of portland cement blended with blast-furnace slag by calorimetry and thermogravimetry.” J. Therm. Anal. Calorim. 102 (3): 941–951. https://doi.org/10.1007/s10973-010-0841-6.
Hatfield, R., and W. Vermerris. 2001. “Lignin formation in plants. The dilemma of linkage specificity.” Plant Physiol. 126 (4): 1351–1357. https://doi.org/10.1104/pp.126.4.1351.
Hong, S.-Y., and F. P. Glasser. 1999. “Alkali binding in cement pastes. Part I: The C-S-H phase.” Cem. Concr. Res. 29 (12): 1893–1903. https://doi.org/10.1016/S0008-8846(99)00187-8.
Hou, P., K. Wang, J. Qian, S. Kawashima, D. Kong, and S. P. Shah. 2012. “Effects of colloidal nanoSiO2 on fly ash hydration.” Cem. Concr. Compos. 34 (10): 1095–1103. https://doi.org/10.1016/j.cemconcomp.2012.06.013.
Huang, J. S. 2013. Plant pathogenesis and resistance: Biochemistry and physiology of plant-microbe interactions. Dordrecht, Netherlands: Springer.
İnan Sezer, G. 2012. “Compressive strength and sulfate resistance of limestone and/or silica fume mortars.” Constr. Build. Mater. 26 (1): 613–618. https://doi.org/10.1016/j.conbuildmat.2011.06.064.
Ipavec, A., R. Gabrovšek, T. Vuk, V. Kaučič, J. Maček, and A. Meden. 2011. “Carboaluminate phases formation during the hydration of calcite-containing portland cement.” J. Am. Ceram. Soc. 94 (4): 1238–1242. https://doi.org/10.1111/j.1551-2916.2010.04201.x.
Jakab, E., O. Faix, and F. Till. 1997. “Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry.” J. Anal. Appl. Pyrolysis 40–41: 171–186. https://doi.org/10.1016/S0165-2370(97)00046-6.
Jensen, O. M., and P. F. Hansen. 2001. Water entrainment in concrete: Techniques and optimum size of inclusions. Aalborg, Denmark: Aalborg Univ.
Johnston, C. D., and Å. Skarendahl. 1992. “Comparative flexural performance evaluation of steel fibre-reinforced concretes according to ASTM C1018 shows importance of fibre parameters.” Mater. Struct. 25 (4): 191–200. https://doi.org/10.1007/BF02473063.
Joseleau, J. P., J. Comtat, and K. Ruel. 1992. “Chemical structure of xylans and their interaction in the plant cell walls.” In Xylans and xylanases, 1–16. Amsterdam, Netherlands: Elsevier.
Joshi, S. V., L. T. Drzal, A. K. Mohanty, and S. Arora. 2004. “Are natural fiber composites environmentally superior to glass fiber reinforced composites?” Compos. Part A: Appl. Sci. Manuf. 35 (3): 371–376. https://doi.org/10.1016/j.compositesa.2003.09.016.
Jud Sierra, E., S. A. Miller, A. R. Sakulich, K. MacKenzie, and M. W. Barsoum. 2010. “Pozzolanic activity of diatomaceous earth.” J. Am. Ceram. Soc. 93 (10): 3406–3410. https://doi.org/10.1111/j.1551-2916.2010.03886.x.
Junli, R., P. Xinwen, Z. Linxin, P. Feng, and S. Runcang. 2012. “Novel hydrophobic hemicelluloses: Synthesis and characteristic.” Carbohydr. Polym. 89 (1): 152–157. https://doi.org/10.1016/j.carbpol.2012.02.064.
Karihaloo, B. L., and J. Wang. 2005. “Micromechanics of fiber reinforced cementitious composites.” In Materials for buildings and structures, 93–111. Weinheim, Germany: Wiley-VCH.
Kastis, D., G. Kakali, S. Tsivilis, and M. G. Stamatakis. 2006. “Properties and hydration of blended cements with calcareous diatomite.” Cem. Concr. Res. 36 (10): 1821–1826. https://doi.org/10.1016/j.cemconres.2006.05.005.
Kennedy, J. F. 1985. Cellulose and its derivatives: Chemistry, biochemistry, and applications. New York: E. Horwood.
Kumar, R., S. Singh, and O. V. Singh. 2008. “Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives.” J. Ind. Microbiol. Biotechnol. 35 (5): 377–391. https://doi.org/10.1007/s10295-008-0327-8.
Lawrence, C. D. 1998. “4—The constitution and specification of portland cements A2—Hewlett, Peter C.” In Lea’s chemistry of cement and concrete, 4th ed., 131–193. Oxford, UK: Butterworth-Heinemann.
Lora, J. H., and W. G. Glasser. 2002. “Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials.” J. Polym. Environ. 10 (1): 39–48. https://doi.org/10.1023/A:1021070006895.
Madani, H., A. Bagheri, and T. Parhizkar. 2012. “The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of portland cement.” Cem. Concr. Res. 42 (12): 1563–1570. https://doi.org/10.1016/j.cemconres.2012.09.004.
Mansur, M. A., and M. A. Aziz. 1982. “A study of jute fibre reinforced cement composites.” Int. J. Cem. Compos. Lightweight Concrete 4 (2): 75–82. https://doi.org/10.1016/0262-5075(82)90011-2.
Massazza, F. 1998. “10—Pozzolana and Pozzolanic cements A2—Hewlett, Peter C.” In Lea’s chemistry of cement and concrete, 4th ed., 471–635. Oxford, UK: Butterworth-Heinemann.
Melo Filho, J. D. A., F. D. A. Silva, and R. D. Toledo Filho. 2013. “Degradation kinetics and aging mechanisms on sisal fiber cement composite systems.” Cem. Concr. Compos. 40: 30–39. https://doi.org/10.1016/j.cemconcomp.2013.04.003.
Merta, I., and E. K. Tschegg. 2013. “Fracture energy of natural fibre reinforced concrete.” Constr. Build. Mater. 40: 991–997. https://doi.org/10.1016/j.conbuildmat.2012.11.060.
Mindess, S., and A. Bentur. 1982. “Technical notes: The fracture of wood fibre reinforced cement.” Int. J. Cem. Compos. Lightweight Concrete 4 (4): 245–249. https://doi.org/10.1016/0262-5075(82)90029-X.
Mohr, B. J., J. J. Biernacki, and K. E. Kurtis. 2007. “Supplementary cementitious materials for mitigating degradation of kraft pulp fiber-cement composites.” Cem. Concr. Res. 37 (11): 1531–1543. https://doi.org/10.1016/j.cemconres.2007.08.001.
Mohr, B. J., H. Nanko, and K. E. Kurtis. 2005. “Durability of kraft pulp fiber-cement composites to wet/dry cycling.” Cem. Concr. Compos. 27 (4): 435–448. https://doi.org/10.1016/j.cemconcomp.2004.07.006.
Nadji, H., P. N. Diouf, A. Benaboura, Y. Bedard, B. Riedl, and T. Stevanovic. 2009. “Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.).” Bioresour. Technol. 100 (14): 3585–3592. https://doi.org/10.1016/j.biortech.2009.01.074.
Neithalath, N., J. Persun, and A. Hossain. 2009. “Hydration in high-performance cementitious systems containing vitreous calcium aluminosilicate or silica fume.” Cem. Concr. Res. 39 (6): 473–481. https://doi.org/10.1016/j.cemconres.2009.03.006.
Ni, Y. 1995. Natural fibre reinforced cement composites. Melbourne, VIC, Australia: Victoria Univ. of Technology.
Novo-Uzal, E., F. Pomar, L. V. Gómez Ros, J. M. Espiñeira, and A. Ros Barceló. 2012. “Evolutionary history of lignins.” Chap. 9 in Advances in botanical research, edited by J. Lise and L. Catherine, 309–350. Waltham, MA: Academic Press.
Pehanich, J. L., P. R. Blankenhorn, and M. R. Silsbee. 2004. “Wood fiber surface treatment level effects on selected mechanical properties of wood fiber-cement composites.” Cem. Concr. Res. 34 (1): 59–65. https://doi.org/10.1016/S0008-8846(03)00193-5.
Pereira, C. L., H. Savastano Jr., J. Payá, S. F. Santos, M. V. Borrachero, J. Monzó, and L. Soriano. 2013. “Use of highly reactive rice husk ash in the production of cement matrix reinforced with green coconut fiber.” Ind. Crops Prod. 49: 88–96. https://doi.org/10.1016/j.indcrop.2013.04.038.
Pickering, K. L., M. G. A. Efendy, and T. M. Le. 2016. “A review of recent developments in natural fibre composites and their mechanical performance.” Compos. Part A: Appl. Sci. Manuf. 83: 98–112. https://doi.org/10.1016/j.compositesa.2015.08.038.
Pimentel, L. L., A. L. Beraldo, and H. Savastano Júnior. 2006. “Durabilidade de compósito biomassa vegetal-cimento modificado por polímero.” Engenharia Agrícola 26 (2): 344–353. https://doi.org/10.1590/S0100-69162006000200002.
Ramachandra, V. S. 1986. “Admixtures and addition interactins in the cement-water system = Interazioni tra additivo ed aggiunta nel sistema cemento-acqua.” Il Cemento 83 (1): 13–38.
Ramachandra, V. S., and Z. Chun-Mei. 1986. “Hydration kinetics and microstructural development in the 3 CaO. Al2O3-CaSO4.2H2O-CaCO3-H2O system.” Mater. Struct. 19 (6): 437–444. https://doi.org/10.1007/BF02472147.
Ramakrishna, G., and T. Sundararajan. 2005. “Impact strength of a few natural fibre reinforced cement mortar slabs: A comparative study.” Cem. Concr. Compos. 27 (5): 547–553. https://doi.org/10.1016/j.cemconcomp.2004.09.006.
Randriamanantena, T., F. L. Razafindramisa, G. Ramanantsizehena, A. Bernes, and C. Lacabane. 2009. “Thermal behaviour of three woods of Madagascar by thermogravimetric analysis in inert atmosphere.” In Proc., 4th High-Energy Physics Int. Conf. Antananarivo, Madagascar: SLAC National Accelerator Laboratory.
Ren, J.-L., and R.-C. Sun. 2010. “Hemicelluloses.” Chap. 4 in Cereal straw as a resource for sustainable biomaterials and biofuels, 73–130. Amsterdam, Netherlands: Elsevier.
Savastano, H., Jr., P. G. Warden, and R. S. P. Coutts. 2003. “Potential of alternative fibre cements as building materials for developing areas.” Cem. Concr. Compos. 25 (6): 585–592.
Siegesmund, S., and R. Snethlage. 2011. Stone in architecture: Properties, durability. Berlin: Springer.
Silva, F. D A., B. Mobasher, and R. D. T. Filho. 2009. “Cracking mechanisms in durable sisal fiber reinforced cement composites.” Cem. Concr. Compos. 31 (10): 721–730. https://doi.org/10.1016/j.cemconcomp.2009.07.004.
Silva, F. D. A., N. Chawla, and R. D. Filho. 2008. “Tensile behavior of high performance natural (sisal) fibers.” Compos. Sci. Technol. 68 (15–16): 3438–3443. https://doi.org/10.1016/j.compscitech.2008.10.001.
Silva, F. D. A., B. Mobasher, C. Soranakom, and R. D. T. Filho. 2011. “Effect of fiber shape and morphology on interfacial bond and cracking behaviors of sisal fiber cement based composites.” Cem. Concr. Compos. 33 (8): 814–823. https://doi.org/10.1016/j.cemconcomp.2011.05.003.
Silva, F. D. A., D. Zhu, B. Mobasher, C. Soranakom, and R. D. Toledo Filho. 2010. “High speed tensile behavior of sisal fiber cement composites.” Mater. Sci. Eng. A 527 (3): 544–552. https://doi.org/10.1016/j.msea.2009.08.013.
Sinha, E., and S. K. Rout. 2009. “Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute fibre and its composite.” Bull. Mater. Sci. 32 (1): 65–76. https://doi.org/10.1007/s12034-009-0010-3.
Sivaraja, M., N. Velmani, and M. S. Pillai. 2010. “Study on durability of natural fibre concrete composites using mechanical strength and microstructural properties.” Bull. Mater. Sci. 33 (6): 719–729. https://doi.org/10.1007/s12034-011-0149-6.
Soroka, I., and N. Stern. 1976. “Calcareous fillers and the compressive strength of portland cement.” Cem. Concr. Res. 6 (3): 367–376. https://doi.org/10.1016/0008-8846(76)90099-5.
Soroushian, P., J.-P. Won, and M. Hassan. 2012. “Durability characteristics of CO2-cured cellulose fiber reinforced cement composites.” Constr. Build. Mater. 34: 44–53. https://doi.org/10.1016/j.conbuildmat.2012.02.016.
Stamatakis, M. G., D. Fragoulis, G. Csirik, I. Bedelean, and S. Pedersen. 2003. “The influence of biogenic micro-silica-rich rocks on the properties of blended cements.” Cem. Concr. Compos. 25 (2): 177–184. https://doi.org/10.1016/S0958-9465(02)00019-7.
Sugimoto, T., T. Akiyama, Y. Matsumoto, and G. Meshitsuka. 2002. “The erythro/threo ratio of β-O-4 structures as an important structural characteristic of lignin. Part 2: Changes in Erythro/Threo (E/T) ratio of β-O-4 structures during delignification reactions.” Holzforschung 56 (4): 416–421. https://doi.org/10.1515/HF.2002.064.
Sukontasukkul, P., W. Pomchiengpin, and S. Songpiriyakij. 2010. “Post-crack (or post-peak) flexural response and toughness of fiber reinforced concrete after exposure to high temperature.” Constr. Build. Mater. 24 (10): 1967–1974. https://doi.org/10.1016/j.conbuildmat.2010.04.003.
Sun, R., Q. Lu, and X. F. Sun. 2001. “Physico-chemical and thermal characterization of lignins from Caligonum monogoliacum and Tamarix spp.” Polym. Degrad. Stab. 72 (2): 229–238. https://doi.org/10.1016/S0141-3910(01)00023-4.
Taylor, H. F. W. 1997. Cement chemistry. 2nd ed. London: Thomas Telford Service.
Theander, O., and D. A. Nelson. 1988. “Aqueous, high-temperature transformation of carbohydrates relative to utilization of biomass.” In Advances in carbohydrate chemistry and biochemistry, edited by R. S. Tipson and H. Derek, 273–326. San Diego: Academic Press.
Thomas, J. J., H. M. Jennings, and J. J. Chen. 2009. “Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement.” J. Phys. Chem. C 113 (11): 4327–4334. https://doi.org/10.1021/jp809811w.
Toledo Filho, R. D., F. D. A. Silva, E. M. R. Fairbairn, and J. D. A. M. Filho. 2009. “Durability of compression molded sisal fiber reinforced mortar laminates.” Constr. Build. Mater. 23 (6): 2409–2420. https://doi.org/10.1016/j.conbuildmat.2008.10.012.
Tolêdo Filho, R. D., K. Ghavami, G. L. England, and K. Scrivener. 2003. “Development of vegetable fibre-mortar composites of improved durability.” Cem. Concr. Compos. 25 (2): 185–196. https://doi.org/10.1016/S0958-9465(02)00018-5.
Tolêdo Filho, R. D., K. Scrivener, G. L. England, and K. Ghavami. 2000. “Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites.” Cem. Concr. Compos. 22 (2): 127–143. https://doi.org/10.1016/S0958-9465(99)00039-6.
Tonoli, G. H. D., S. F. Santos, A. P. Joaquim, and H. Savastano Jr. 2010. “Effect of accelerated carbonation on cementitious roofing tiles reinforced with lignocellulosic fibre.” Constr. Build. Mater. 24 (2): 193–201. https://doi.org/10.1016/j.conbuildmat.2007.11.018.
Vance, K., M. Aguayo, T. Oey, G. Sant, and N. Neithalath. 2013. “Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin.” Cem. Concr. Compos. 39: 93–103. https://doi.org/10.1016/j.cemconcomp.2013.03.028.
Van Loon, L. R., and M. A. Glaus. 1997. “Review of the kinetics of alkaline degradation of cellulose in view of its relevance for safety assessment of radioactive waste repositories.” J. Environ. Polym. Degrad. 5 (2): 97–109.
Weerdt, K., M. B. Haha, G. Le Saout, K. O. Kjellsen, H. Justnes, and B. Lothenbach. 2011a. “Hydration mechanisms of ternary portland cements containing limestone powder and fly ash.” Cem. Concr. Res. 41 (3): 279–291. https://doi.org/10.1016/j.cemconres.2010.11.014.
Weerdt, K. D., K. O. Kjellsen, E. Sellevold, and H. Justnes. 2011b. “Synergy between fly ash and limestone powder in ternary cements.” Cem. Concr. Compos. 33 (1): 30–38. https://doi.org/10.1016/j.cemconcomp.2010.09.006.
Weerdt, K. D., E. Sellevold, K. O. Kjellsen, and H. Justnes. 2011c. “Fly ash-limestone ternary cements: Effect of component fineness.” Adv. Cem. Res. 23 (4): 203–214. https://doi.org/10.1680/adcr.2011.23.4.203.
Wei, J. 2018. “Degradation behavior and kinetics of sisal fiber in pore solutions of sustainable cementitious composite containing metakaolin.” Polym. Degrad. Stab. 150: 1–12. https://doi.org/10.1016/j.polymdegradstab.2018.01.027.
Wei, J., S. Ma, and D. S. G. Thomas. 2016. “Correlation between hydration of cement and durability of natural fiber-reinforced cement composites.” Corros. Sci. 106: 1–15. https://doi.org/10.1016/j.corsci.2016.01.020.
Wei, J., and C. Meyer. 2014a. “Degradation rate of natural fiber in cement composites exposed to various accelerated aging environment conditions.” Corros. Sci. 88: 118–132. https://doi.org/10.1016/j.corsci.2014.07.029.
Wei, J., and C. Meyer. 2014b. “Improving degradation resistance of sisal fiber in concrete through fiber surface treatment.” Appl. Surf. Sci. 289: 511–523. https://doi.org/10.1016/j.apsusc.2013.11.024.
Wei, J., and C. Meyer. 2015. “Degradation mechanisms of natural fiber in the matrix of cement composites.” Cem. Concr. Res. 73: 1–16. https://doi.org/10.1016/j.cemconres.2015.02.019.
Wei, J., and C. Meyer. 2016. “Utilization of rice husk ash in green natural fiber-reinforced cement composites: Mitigating degradation of sisal fiber.” Cem. Concr. Res. 81: 94–111. https://doi.org/10.1016/j.cemconres.2015.12.001.
Yao, F., Q. Wu, Y. Lei, W. Guo, and Y. Xu. 2008. “Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis.” Polym. Degrad. Stab. 93 (1): 90–98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012.
Yilmaz, B., and E. Hocaoglu. 2011. “Fly ash and limestone in diatomite-blended portland cement.” Adv. Cem. Res. 23 (3): 151–159. https://doi.org/10.1680/adcr.7.00036.
Yılmaz, B., and N. Ediz. 2008. “The use of raw and calcined diatomite in cement production.” Cem. Concr. Compos. 30 (3): 202–211. https://doi.org/10.1016/j.cemconcomp.2007.08.003.
Zelić, J., R. Krstulović, E. Tkalčec, and P. Krolo. 2000. “The properties of portland cement-limestone-silica fume mortars.” Cem. Concr. Res. 30 (1): 145–152. https://doi.org/10.1016/S0008-8846(99)00216-1.
Zhan, H. Y. 2005. Fiber chemistry and physics. Beijing: Science Press.
Zhang, M. Q., M. Z. Rong, and X. Lu. 2005. “Fully biodegradable natural fiber composites from renewable resources: All-plant fiber composites.” Compos. Sci. Technol. 65 (15–16): 2514–2525. https://doi.org/10.1016/j.compscitech.2005.06.018.
Zhang, P., H. R. Hu, and S. L. Shi. 2006. “Application of hemicellulose.” Tianjin Pap Mak 2: 16–18.
Zhang, Y., J. Liu, P. Gao, D. Shi, and S. Pang. 1997. “Scanning tunneling microscopy of the ultrastructure of native cellulose.” Shengwu Wuli Xuebao 13 (3): 375–379.
Zhu, W. H., B. C. Tobias, R. S. P. Coutts, and G. Langfors. 1994. “Air-cured banana-fibre-reinforced cement composites.” Cem. Concr. Compos. 16 (1): 3–8. https://doi.org/10.1016/0958-9465(94)90024-8.
Ziderman, I., and J. Bel-Ayche. 1978. “Kinetics for unidirectional endwise chain depolymerizations. Experiments with amylose in aqueous alkaline solutions.” J. Appl. Polym. Sci. 22 (4): 1151–1158. https://doi.org/10.1002/app.1978.070220424.
Ziderman, I. I., and J. Belayche. 1986. “Using disaccharides as a kinetic model for alkaline degradation of celluloses and starches.” J. Appl. Polym. Sci. 32 (1): 3255–3261. https://doi.org/10.1002/app.1986.070320128.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 30Issue 11November 2018

History

Received: Nov 21, 2017
Accepted: Apr 27, 2018
Published online: Aug 13, 2018
Published in print: Nov 1, 2018
Discussion open until: Jan 13, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Jianqiang Wei, Ph.D. [email protected]
Assistant Professor, Dept. of Civil and Environmental Engineering, Univ. of Massachusetts Lowell, One University Ave., Lowell, MA 01854 (corresponding author). Email: [email protected]
Bora Gencturk, Ph.D., A.M.ASCE [email protected]
P.E.
Assistant Professor, Sonny Astani Dept. of Civil and Environmental Engineering, Univ. of Southern California, 3620 S. Vermont Ave., KAP 210, Los Angeles, CA 90089. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share