Abstract

Alkali-activated binders (AABs) are a material obtained from the combination of a solid precursor and an alkaline activating solution. In this study, one solid precursor used was blast-furnace slag (BFS) and the other was an agro waste: sugar cane straw ash (SCSA). Sodium hydroxide was used for preparing activating solutions. In order to reach the potential reactivity of the SCSA, a study varying the BFS/SCSA mass ratio and H2O/Na2O molar ratio was carried out. The BFS/SCSA ratio varied from 100/0 to 70/30, and H2O/Na2O was studied in the range of 11.1–18.5. To fulfill this objective, specimens were assessed by their compressive strength of mortars and microstructural studies of pastes [X-ray diffraction (XRD); thermogravimetric analysis (TGA); Fourier transform infrared spectroscopy (FTIR); and field emission scanning electron microscopy (FESEM)] in the curing time range of 3–90 days at 25°C. Results from these tests showed that the best BFS/SCSA and H2O/Na2O ratios were 70/30 and 18.5, respectively. This study revealed an interesting valorization of the SCSA as a complementary precursor in BFS-based AABs because of the improvement of mechanical properties and the reduction in the consumption of BFS in AAB.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to thank CNPq processo n° 401724/2013-1, CNPq processo n° 140779/2015-0, and the “Ministerio de Educación, Cultura y Deporte” of Spain (“Cooperación Interuniversitaria” program with Brazil PHB-2011-0016-PC). Thanks are also given to the Electron Microscopy Service of the Universitat Politècnica de València.

References

Abdalqader, A. F., Jin, F., and Al-Tabbaa, A. A. (2016). “Development of greener alkali-activated cement: Utilisation of sodium carbonate for activating slag and fly ash mixtures.” J. Clean. Prod., 113, 66–75.
Alves, M., Ponce, G. H. S. F., Silva, M. A., and Ensinas, A. V. (2015). “Surplus electricity production in sugarcane mills using residual bagasse and straw as fuel.” Energy, 91, 751–757.
Aydın, S., and Baradan, B. (2012). “Mechanical and microstructural properties of heat cured alkali-activated slag mortars.” Mater. Des., 35, 374–383.
Aydın, S., and Baradan, B. (2014). “Effect of activator type and content on properties of alkali-activated slag mortars.” J. Compos. Part B, 57, 166–172.
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B. (1999). “Alkali activation of Australian slag cements.” Cem. Concr. Res., 29(1), 113–120.
Bernal, S. A., et al. (2013). “Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation.” Cem. Concr. Res., 53, 127–144.
Bernal, S. A., Rodríguez, E. D., Gutiérrez, R. B., Gordillo, M., and Provis, J. L. (2011). “Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends.” J. Mater. Sci., 46(16), 5477–5486.
Borges, P. H. R., Banthia, N., Alcamand, H. A., Vascolcelos, W. L., and Nunes, E. H. M. (2016). “Performance of blended metakaolin/blastfurnace slag alkali-activated mortars.” Cem. Concr. Compos., 71, 42–52.
Brough, A. R., and Atkinson, A. (2002). “Sodium silicate-based, alkali-activated slag mortars. I: Strength, hydration and microstructure.” Cem. Concr. Res., 32(6), 865–879.
Castaldelli, V. N., et al. (2013). “Use of slag/sugar cane bagasse ash (SCBA) blends in the production of alkali-activated materials.” Materials, 6(8), 3108–3127.
Chi, M., and Huang, R. (2013). “Binding mechanism and properties of alkali-activated fly ash/slag mortars.” Constr. Build. Mater., 40, 291–298.
Duxson, P., Provis, J. L., Lukey, G. C., and van Deventer, J. S. J. (2007). “The role of inorganic polymer technology in the development of ‘green concrete’.” Cem. Concr. Res., 37(12), 1590–1597.
Fernández-Jiménez, A., and Puertas, F. (2003). “Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements.” Adv. Cem. Res., 15(3), 129–136.
Gencel, O., Sutcu, M., Erdogmus, E., Koc, V., Cay, V. V., and Gok, M. S. (2013). “Properties of bricks with waste ferrochromium slag and zeolite.” J. Clean. Prod., 59, 111–119.
Haha, M. B., Saout, G. L., Winnefeld, F., and Lothenbach, B. (2011). “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags.” Cem. Concr. Res., 41(3), 301–310.
Hanjitsuwan, S., Hunpratub, S., Thongbai, P., Maensiri, S., Sata, V., and Chindaprasirt, P. (2014). “Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste.” Cem. Concr. Compos., 45, 9–14.
Ismail, I., Bernal, S. A., Provis, J. L., Nicolas, R. S., Hamdan, S., and van Deventer, J. S. J. (2014). “Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash.” Cem. Concr. Compos., 45, 125–135.
Jambunathan, N., et al. (2013). “The role of alumina on performance of alkali-activated slag paste exposed to 50°C.” Cem. Concr. Res., 54, 143–150.
Jin, F., Gu, K., and Al-Tabbaa, A. (2015). “Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste.” Cem. Concr. Res., 57, 8–16.
Leal, M. R. L. V., Galdos, M. V., Scarpare, F. V., Seabra, J. E. A., Walter, A., and Oliveira, C. O. F. (2013). “Sugarcane straw availability, quality, recovery and energy use: A literature review.” Biomass Bioenerg., 53, 11–19.
Lemos, S. V., Denadai, M. S., Guerra, S. P. S., Esperancini, M. S. T., Bueno, O. C., and Takitane, I. C. (2014). “Economic efficiency of two baling systems for sugarcane straw.” Ind. Crop Prod., 55, 97–101.
Li, N., Farzadnia, N., and Shi, C. (2017). “Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation.” Cem. Concr. Res., 100, 214–226.
Madlool, N. A., Saidur, R., Rahim, N. A., and Kamalisarvestani, M. (2013). “An overview of energy savings measures for cement industries.” Renew. Sust. Energ. Rev., 19, 18–29.
Majchrzak-Kuceba, I. (2013). “A simple thermogravimetric method for the evaluation of the degree of fly ash conversion into zeolite material.” J. Porous Mater., 20(2), 407–415.
Meyer, C. (2009). “The greening of the concrete industry.” Cem. Concr. Compos., 31(8), 601–605.
Moraes, B. S., Zaiat, M., and Bonomi, A. (2015a). “Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives.” Renew. Sustain. Energy Rev., 44, 888–903.
Moraes, J. C. B., et al. (2015b). “Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended portland cement: Microstructural characterization of pastes and mechanical strength of mortars.” Constr. Build. Mater., 94, 670–677.
Moraes, J. C. B., et al. (2016a). “Increasing the sustainability of alkali-activated binders: The use of sugar cane straw ash (SCSA).” Constr. Build. Mater., 124, 148–154.
Moraes, J. C. B., et al. (2016b). “Pozzolanic reactivity studies on a biomass-derived waste from sugar cane production: Sugar cane straw ash (SCSA).” ACS Sust. Chem. Eng., 4(8), 4273–4279.
Moraes, J. C. B., et al. (2017). “Effect of sugar cane straw ash (SCSA) as solid precursor and the alkaline activator composition on alkali-activated binders based of blast furnace slag (BFS).” Constr. Build. Mater., 144, 214–224.
Myers, R. P., Bernal, S. A., Nicolas, R. A., and Provis, J. L. (2013). “Generalized structural description of calcium-sodium aluminosilicate hydrate gels: The cross-linked substituted tobermorite model.” Langmuir, 29(17), 5294–5306.
Özbay, E., Erdemir, M., and Durmus, H. I. (2016). “Utilization and efficiency of ground granulated blast furnace slag on concrete properties—A review.” Constr. Build. Mater., 105, 423–434.
Ozer, I., and Soyer-Uzun, S. (2015). “Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios.” Ceram. Int., 41(8), 10192–10198.
Pacheco-Torgal, F., Labrincha, J. A., Leonelli, C., Palomo, A., and Chindaprasirt, P. (2015). Handbook of alkali-activated cements, mortars and concretes, 1st Ed., Woodhead Publishing and Elsevier, Waltham, MA.
Pereira, A., et al. (2015). “Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag.” Ceram. Int., 41(10), 13012–13024.
Provis, J. K., Palomo, A., and Shi, C. (2015). “Advances in understanding alkali-activated materials.” Cem. Concr. Res., 78(10), 110–125.
Provis, J. L., and van Deventer, J. S. J. (2014). Alkali activated materials: State-of-the-art report, 1st Ed., Springer, New York.
Puertas, F., and Fernández-Jiménez, A. (2003). “Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes.” Cem. Concr. Compos., 25(3), 287–292.
Rakhimova, N. R., and Rakhimov, R. Z. (2015). “Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste.” Mater. Des., 85, 324–331.
Rashad, A. A., Zeedan, S. R., and Hassan, A. A. (2016). “Influence of the activator concentration of sodium silicate on the thermal properties of alkali-activated slag pastes.” Constr. Build. Mater., 102, 811–820.
Ravikumar, D., and Neithalath, N. (2012). “Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH.” Cem. Concr. Compos., 34(7), 809–818.
Salih, M. A., Farzadnia, N., Ali, A. A. A., and Demirboga, R. (2015). “Development of high strength alkali activated binder using palm oil fuel ash and GGBS at ambient temperature.” Constr. Build. Mater., 93, 289–300.
Schilling, P. J., Roy, A., Eaton, H. C., Malone, P. G., and Brabston, W. N. (1994). “Microstructure, strength, and reaction products of ground granulated blast-furnace slag activated by highly concentrated NaOH solution.” J. Mater. Res., 9(1), 188–197.
Shearer, C. R., Provis, J. L., Bernal, S. A., and Kurtis, K. E. (2016). “Alkali-activation potential of biomass-coal co-fired fly ash.” Cem. Concr. Res., 73, 62–74.
Shen, L., et al. (2014). “Factory-level measurements on CO2 emission factors of cement production in China.” Renew. Sust. Energ. Rev., 34, 337–349.
Shi, C., Fernández Jiménez, A., and Palomo, A. (2011). “New cements for the 21st century: The pursuit of an alternative to portland cement” Cem. Concr. Res., 41(7), 750–763.
Shi, C., Roy, D. M., and Krivenko, P. (2006). Alkali-activated cements and concretes, 1st Ed., Taylor & Francis, Milton Park, U.K.
Song, S., and Jennings, H. M. (1999). “Pore solution chemistry of alkali-activated ground granulated blast-furnace slag.” Cem. Concr. Res., 29(2), 159–170.
Song, S., Sohn, D., Jennings, H. M., and Mason, T. O. (2000). “Hydration of alkali-activated ground granulated blast furnace slag.” J. Mater. Sci., 35(1), 249–257.
Tashima, M. M., et al. (2013). “Alkali activated materials based on fluid catalytic cracking catalyst residue (FCC): Influence of SiO2/Na2O and H2O/FCC ratio on mechanical strength and microstructure.” Fuel, 108, 833–839.
Turner, L. K., and Collins, F. K. (2013). “Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete.” Constr. Build. Mater., 43, 125–130.
UNICA (União da Indústria de Cana-de-Açúcar). (2016). “Sugarcane production.” ⟨http://www.unicadata.com.br/index.php?idioma=2⟩ (Oct. 19, 2016).
Usón, A. A., López-Sabirón, A. M., Ferreira, G., and Sastresa, E. L. (2013). “Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options.” Renewable Sustainable Energy Rev., 23, 242–260.
Uzun, H., Yıldız, Z., Goldfarb, J. L., and Ceylan, S. (2017). “Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis.” Bioresour. Technol., 234, 122–130.
van Deventer, J. S. J., Provis, J. L., Duxson, P., and Brice, D. G. (2010). “Chemical research and climate change as drivers in the commercial adoption of alkali activated materials.” Waste Biomass Valor., 1(1), 145–155.
Wang, S. D., Scrivener, J. K., and Prat, P. L. (1994). “Factors affecting the strength of alkali-activated slag.” Cem. Concr. Res., 24(6), 1033–1043.
Yusuf, M. O., Johari, M. A. M., Ahmad, Z. A., and Maslehuddin, M. (2014). “Influence of curing methods and concentration of NaOH on strength of the synthesized alkaline activated ground slag-ultrafine palm oil fuel ash mortar/concrete.” Constr. Build. Mater., 66, 541–548.
Zhang, Z., Provis, J. L., Reid, A., and Wang, H. (2014). “Geopolymer foam concrete: An emerging material for sustainable construction.” Constr. Build. Mater., 56, 113–127.
Zhang, Z., Wang, H., and Provis, J. L. (2012). “Quantitative study of the reactivity of fly ash in geopolymerization by FTIR.” J. Sust. Cem. Bas. Mater., 1(4), 154–166.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 30Issue 6June 2018

History

Received: Aug 21, 2017
Accepted: Oct 31, 2017
Published online: Mar 20, 2018
Published in print: Jun 1, 2018
Discussion open until: Aug 20, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

João Claudio Bassan de Moraes
P.G.
Ph.D. Student, Grupo de Pesquisa MAC–Materiais Alternativos de Construção, Universidade Estadual Paulista, Faculdade de Engenharia de Ilha Solteira, Campus de Ilha Solteira, Alameda Bahia, 550, 15385-000, Ilha Solteira, São Paulo, Brazil.
Mauro Mitsuuchi Tashima, Ph.D. [email protected]
Professor, Grupo de Pesquisa MAC–Materiais Alternativos de Construção, Universidade Estadual Paulista, Faculdade de Engenharia de Ilha Solteira, Campus de Ilha Solteira, Alameda Bahia, 550, 15385-000, Ilha Solteira, São Paulo, Brazil (corresponding author). E-mail: [email protected]
José Luiz Pinheiro Melges, Ph.D.
Professor, Grupo de Pesquisa MAC–Materiais Alternativos de Construção, Universidade Estadual Paulista, Faculdade de Engenharia de Ilha Solteira, Campus de Ilha Solteira, Alameda Bahia, 550, 15385-000, Ilha Solteira, São Paulo, Brazil.
Jorge Luís Akasaki, Ph.D.
Professor, Grupo de Pesquisa MAC–Materiais Alternativos de Construção, Universidade Estadual Paulista, Faculdade de Engenharia de Ilha Solteira, Campus de Ilha Solteira, Alameda Bahia, 550, 15385-000, Ilha Solteira, São Paulo, Brazil.
José Monzó, Ph.D.
Professor, GIQUIMA Group–Grupo de Investigación en Química de los Materiales de Construcción, Instituto de Ciencia y Tecnología del Hormigón, Universitat Politècnica de València, Camino de Vera, s/n, 4N, 46022 Valencia, Spain.
Maria Victoria Borrachero, Ph.D.
Professor, GIQUIMA Group–Grupo de Investigación en Química de los Materiales de Construcción, Instituto de Ciencia y Tecnología del Hormigón, Universitat Politècnica de València, Camino de Vera, s/n, 4N, 46022 Valencia, Spain.
Lourdes Soriano, Ph.D.
Professor, GIQUIMA Group–Grupo de Investigación en Química de los Materiales de Construcción, Instituto de Ciencia y Tecnología del Hormigón, Universitat Politècnica de València, Camino de Vera, s/n, 4N, 46022 Valencia, Spain.
Jordi Payá, Ph.D.
Professor, GIQUIMA Group–Grupo de Investigación en Química de los Materiales de Construcción, Instituto de Ciencia y Tecnología del Hormigón, Universitat Politècnica de València, Camino de Vera, s/n, 4N, 46022 Valencia, Spain.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share