Technical Papers
Jul 31, 2015

Simple and Rational Methodology for the Formulation of Self-Compacting Concrete Mixes

Publication: Journal of Materials in Civil Engineering
Volume 28, Issue 2

Abstract

The increasing use of self-compacting concrete (SCC) in the construction industry should be assured by the development of mix designs adequate to improve their fresh/hardened state properties and their economy. This paper presents a methodology for the formulation of SCC that achieves some of these developmental goals without reliance on extensive laboratory testing and batch trials. Applications, results in the fresh and hardened state, and discussion of the SCC obtained are presented. The proposed method can provide lower costs when compared to a current SCC mix design method and the literature used for comparison.

Get full access to this article

View all available purchase options and get full access to this article.

References

ACI (American Concrete Institute). (2007). “Self- consolidating concrete.”, Farmington Hills, MI.
Aguilar, C., and Barrera, H. (2003). “Influence of fines on self compacting concrete properties.” Rev. Ing. Constr., 8(1), 40–46 (in Spanish).
Agullo, L., Toralles-Carbonari, B., Gettu, R., and Aguado, A. (1999). “Fluidity of cement pastes with mineral admixtures and superplasticizer-—A study based on the Marsh cone test.” Mater. Struct., 32(7), 479–485.
Aitcin, P. C. (1998). High-performance concrete, E&FN Spon, London.
Almeida Filho, F. M., Barragan, B. E., Casas, J. R., and El Debs, A. L. H. C. (2010). “Hardened properties of self-compacting concrete: A statistical approach.” Constr. Build. Mater., 24(9), 1608–1615.
Alyamaç, K. E., and Ince, R. (2009). “A preliminary concrete mix design for SCC with marble powders.” Constr. Build. Mater., 23(3), 1201–1210.
ASTM. (2009). “Standard test method for bulk density (unit weight) and voids in aggregates.” C29/C29M-09, West Conshohoken, PA.
ASTM. (2014). “Standard test method for air content of freshly mixed concrete by the pressure method.” C231-14, West Conshohoken, PA.
Azeredo, G., and Diniz, M. (2013). “Self-compacting concrete obtained by the use of kaolin wastes.” Constr. Build. Mater., 38, 515–523.
Bermejo, E. B., Moragues, A., Galvez, J. C., and Fernandez Canovas, M. (2010). “Permeability and pore size distribution in medium strength self-compacting concrete.” Mater. Constr., 60(299), 37–51.
BIBM (European Precast Concrete Organisation), CEMBUREAU (European Cement Association), ERMCO (European Ready-mix Concrete Organisation), EFCA (European Federation of Concrete Admixture Associations), and EFNARC (European Federation of Specialist Construction Chemicals and Concrete Systems). (2005). “The European guidelines for self-compacting concrete.” 〈http://www.efnarc.org/pdf/SCCGuidelinesMay2005.pdf〉 (Jul. 2, 2015).
Cuenca, J., Rodríguez, J., Martín-Morales, M., Sánchez-Roldán, Z., and Zamorano, M. (2013). “Effects of olive residue biomass fly ash as filler in self-compacting concrete.” Constr. Build. Mater., 40(1), 702–709.
Cuneyt, A. (2007). “Self-compactability of high volume hybrid fiber reinforced concrete.” Constr. Build. Mater., 21(6), 1149–1154.
De Larrard, F. (1999). Concrete mixture proportioning—A scientific approach, E&FN Spon, London.
De Schutter, G., and Audenaert, K. (2007). “Durability of self-compacting concrete.”, RILEM Publications S.A.R.L., Bagneux, France.
De Schutter, G., Gibbs, J., Domone, P., and Bartos, P. J. M. (2008). Self-compacting concrete, Whittles, Dunbeath, Scotland, U.K.
Ebensperger, L., and Torrent, R. (2010). “Concrete air permeability ‘in situ’ test: Status quo.” Rev. Ing. Constr., 25(3), 371–382.
Emborg, M. (2000). “Mixing and transport.”, Self-Compacting Concrete, Sweden, 1–65.
Felekoğlu, B. (2007). “Utilisation of high volumes of limestone quarry wastes in concrete industry (self-compacting concrete case).” Resour. Conser. Recycl., 51(4), 770–791.
Felekoğlu, B., and Sarikahya, H. (2007). “Effect of chemical structure of polycarboxylate-based superplasticizers on workability retention of self-compacting concrete.” Constr. Build. Mater., 22(9), 1972–1980.
Felekoğlu, B., Türkel, S., and Baradan, B. (2007). “Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete.” Build. Environ., 42(4), 1795–1802.
Ferrara, L., Park, Y. D., and Shah, S. P. (2007). “A method for mix-design of fiber-reinforced self-compacting concrete.” Cem. Concr. Res., 37(6), 957–971.
Gomes, P., Gettu, R., and Agulló, L. (2002). “Diseño de hormigones autocompactables de alta resistencia.” Procedimiento para su dosificación y métodos de caracterización, Cem.-Hormigón, 30–42 (in Spanish).
Hemalatha, T., Ramaswamy, A., and Chandra Kishen, J. M. (2015). “Simplified mixture design for production of self-consolidating concrete.” ACI Mater. J., 112(2), 277–286.
Hunger, M., Entrop, A. G., Mandilaras, I., Brouwers, H. J. H., and Founti, M. (2009). “The behavior of self-compacting concrete containing micro-encapsulated phase change materials.” Cem. Concr. Compos., 31(10), 731–743.
Jalal, M., Ramezanianpour, A. A., and Pool, M. K. (2013). “Split tensile strength of binary blended self compacting concrete containing low volume fly ash and TiO2 nanoparticles.” Compos. Part B: Eng., 55, 324–337.
JSCE (Japanese Society of Civil Engineering). (1999). “Recommendation for self- compacting concrete.” 〈http://www.jsce.or.jp/committee/concrete/e/newsletter/newsletter01/recommendations.htm〉 (Jul. 2, 2015).
Kantro, D. L. (1980). “Influence of water-reducing admixtures on properties of cement paste—A miniature slump test.” Cem. Concr. Aggregates, 2(2), 95–102.
Klein, N. (2012). “El rol fisico del agua en mezclas de cemento portland.” Ph.D. thesis, Universidad Politécnica de Catalunya, Barcelona, Spain (in Spanish).
Klein, N., Bachmann, J., Aguado, A., and Toralles-Carbonari, B. (2013). “Evaluation of the wettability of mortar component granular materials through contact angle measurements.” Cem. Concr. Res., 42(12), 1611–1620.
Najim, K. B., and Hall, M. R. (2010). “A review of the fresh/hardened properties and applications for plain-(PRC) and self-compacting rubberised concrete (SCRC).” Constr. Build. Mater., 24(11), 2043–2051.
Nikbin, I. M., et al. (2014). “A comprehensive investigation into the effects of water to cement ratio and powder content on mechanical properties of self-compacting concrete.” Constr. Build. Mater., 57(1), 69–80.
Nunes, S., Milheiro-Oliveira, P., Sousa Coitinho, J., and Figueiras, J. (2013). “Robust SCC mixes through mix design.” J. Mater. Civ. Eng., 183–193.
Okamura, H. (1997). “Self compacting concrete.” Concr. Int., 9(7), 50–54.
Patel, R., Hossain, K. M. A., Shehata, M., Bouzoubaa, N., and Lachemi, M. (2004). “Development of statistical models for mixture design of high-volume fly-ash self-consolidating concrete.” ACI Mater. J., 101(4), 294–302.
Pepe, M., Mazaheripour, H., Barros, J., Sena-Cruz, J., and Martinelli, E. (2013). “Numerical calibration of bond law for GFRP bars embedded in steel fibre-reinforced self-compacting concrete.” Compos. Part B: Eng., 50(July), 403–412.
Persson, B. (2001). “A comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal concrete.” Cem. Concr. Res., 31(2), 193–198.
Petersson, O., Billberg, P., and Van, B. K. (1996). “A model for self-compacting concrete.” Proc., RILEM Int. Conf. on Production Methods and Workability of Fresh Concrete, Paisley, E&FN Spon, London, 484–492.
Reinhardt, H., and Stegmaier, M. (2006). “Influence of heat curing on the pore structure and compressive strength of self-compacting concrete (SCC).” Cem. Concr. Res., 36(5), 879–885.
Rodriguez de Sensale, G. (2006). “Self-compacting concrete.”, Agencia Nacional de Investigación e Innovación (ANII), Montevideo, Uruguay.
Rodriguez Viacava, I., Aguado, A., and Rodriguez de Sensale, G. (2012). “Self-compacting concrete of medium characteristic strength.” Constr. Build. Mater., 30, 776–782.
Rodriguez Viacava, I., Cavalaro, S. H. P., Rodríguez-de-Sensale, G., and Aguado, A. (2014). “Hormigones autocompactantes de resistencias medias.” Cem.-Hormigón, 28–36.
Roncero, J., Corradi, M., Khurana, R. S., Magarotto, R., and Moro, S. (2008). “Smart dynamic concrete: New approach for the ready-mixed industry.” 3rd North American Conf. on the Design and Use of Self-Consolidating Concrete, Vol. 2, Surendra P. Shah, ed., Center for Advanced Cement-Based Materials (ACBM), Red Hook, NY, 602–607.
Roziere, E., Granger, S., Turcry, P. Y., and Loukili, A. (2007). “Influence of paste volume on shrinkage cracking and fracture properties of selfcompacting concrete.” Cem. Concr. Compos., 29(8), 626–636.
Saak, A., Jennings, H., and Shah, S. (2001). “New methodology for designing self-compacting concrete.” ACI Mater. J., 98(6), 429–439.
Sahmaran, M., and Yaman, O. (2007). “Hybrid fiber reinforced self-compacting concrete with a high volume coarse fly ash.” Constr. Build. Mater., 21(1), 150–156.
Sebaibi, N., Benzerzour, M., Sebaibi, Y., and Abriak, N. E. (2013). “Composition of self- compacting concrete (SCC) using the compressible packing model, the Chinese method and the European standard.” Constr. Build. Mater., 43, 382–388.
Sedran, T., and De Larrard, F. (1999). “Optimization of self-compacting concrete thanks to packing model.” Proc., 1st Int. RILEM Symp. on SCC, Stockholm, RILEM, Paris, 321–332.
Sedran, T., De Larrard, F., Hourst, F., and Containe, C. (1996). “Mix design of self-compacting concrete.” Production methods and workability of concrete, P. J. M. Bartos, D. L. Marrs, and D. Cleand, eds., E&FN Spon, London, 439–450.
Shen, J., Yurtdas, I., Diagana, C., and Li, A. (2009). “Mix design method of SCC for pre-cast industry.” Can. J. Civ. Eng., 36(9), 1459–1469.
SIA. (2003). “Construction en béton-specifications complémentaires, Annexe E: On site air permeability, according to the Torrent method.” SIA 262/1:2003, Zurich, Switzerland, 30–31.
Siddique, R., Aggarwal, P., and Aggarwal, Y. (2012). “Influence of water/powder ratio on strength properties of self-compacting concrete containing coal fly ash and bottom ash.” Constr. Build. Mater., 29, 73–81.
Sonebi, M. (2004). “Medium strength self-compacting concrete containing fly ash: Modelling using factorial experimental plans.” Cem. Concr. Res., 34(7), 1199–1208.
Su, N., Kung-Chung, H., and His-Wen, C. (2001). “A simple mix design method for self-compacting concrete.” Cem. Concr. Res., 31(12), 1799–1807.
Su, N., and Miao, B. (2003). “A new method for the mix design of medium strength flowing concrete with low cement content.” Cem. Concr. Compos., 25(2), 215–222.
Topcu, I. B., Bilir, T., and Uygunoğlu, T. (2009). “Effect of waste marble dust content as filler on properties of self-compacting concrete.” Constr. Build. Mater., 23(11), 1947–1953.
Torrales Carbonari, B. (1996). “Estudio paramétrico de variables y componentes relativos a la dosificación y producción de hormigones de altas prestaciones.” Ph.D. thesis, Universidad Politécnica de Catalunya, Barcelona, Spain (in Spanish).
Torrent, R. (1999). “Un método rápido y no destructivo para medir la permeabilidad del hormigón.” Materiales de construcción, 49(254), 51–56.
Torrent, R., and Frenzer, G. (1995). “A method for rapid determination of the coefficient of permeability of the covercrete.” Proc., Int. Symp. Non-Destructive Testing in Civil Engineering (NDT-CE), Berlin, 985–992.
UNE-EN. (2002). “Aridos para hormigón.” UNE-EN 12620, Madrid, España.
Vilanova, A. (2009). “Influencia de la dosificación y empleo de diferentes tipod de cemento y adiciones en las propiedades mecánicas del hormigón autocompactante.” Ph.D. thesis, Universidad Politécnica de Madrid, Madrid, Spain (in Spanish).
Wang Choj, Y., Jic Kim, I., Cheol Shin, H., and Young Moon, H. (2006). “An experimental research on the fluidity and mechanical properties of high-strength lightweight self-compacting concrete.” Cem. Concr. Res., 36(9), 1595–1602.
Whiting, D., and Nagi, A. (2003). “Electrical resistivity of concrete—A literature review.” Portland Cement Association, Skokie, IL.
Xie, Y., Liu, B., Yin, J., and Zhou, S. (2002). “Optimum mix parameters of high-strength self-compacting concrete with ultrapulverized fly ash.” Cem. Concr. Res., 32(3), 477–480.
Yazici, H. (2008). “The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze-thaw resistance of selfcompacting concrete.” Constr. Build. Mater., 22(4), 456–462.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 28Issue 2February 2016

History

Received: Jan 19, 2015
Accepted: May 14, 2015
Published online: Jul 31, 2015
Discussion open until: Dec 31, 2015
Published in print: Feb 1, 2016

Permissions

Request permissions for this article.

Authors

Affiliations

G. Rodriguez de Sensale [email protected]
Instituto de la Construcción, Facultad de Arquitectura, Universidad de la República, Hugo Prato 2314, Montevideo 11200, Uruguay; and Facultad de Ingenieria, Instituto de Ensayo de Materiales, Universidad de la República, Julio Herrera y Reissig 565, Montevideo 11300, Uruguay (corresponding author). E-mail: [email protected]
I. Rodriguez Viacava
Facultad de Ingenieria, Instituto de Ensayo de Materiales, Universidad de la República, Julio Herrera y Reissig 565, Montevideo 11300, Uruguay.
A. Aguado
Escola Técnica Superior d’Enginyers de Camins, Canals i Ports, UPC-BarcelonaTech, C/Jordi Girona Salgado 1-3, Mod. C1, 08034 Barcelona, Spain.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share