Case Studies
Apr 21, 2014

Hygrothermal Features of Laterite Dimension Stones for Sub-Saharan Residential Building Construction

Publication: Journal of Materials in Civil Engineering
Volume 26, Issue 7

Abstract

The building sector is widely recognized as having a major impact on sustainable development. Both in developed and developing countries, sustainability in buildings approaches are growing. Laterite dimension stone (LDS) is a building material that was traditionally used in sub-Saharan Africa, but its technical features still need to be assessed. This article presents some results of a study focused on the characterization of LDS exploited in Burkina Faso for building purposes. The measured average thermal conductivity is 0.51W/mK, which increases with water content and evolves with the specific gravity and with porosity. Rock mineral phases (quartz, goethite, hematite, magnetite) are cemented by kaolinite. The porosity of the material is high (30%), with macropores visible on the surface and found in the rock inner structure as well. Results from the hygrothermal monitoring of a pilot building are also presented.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research is carried out in the framework of the Ph.D. activities of Abdou Lawane at International Institute for Water and Environmental Engineering (2iE) and the University of Le Havre, Laboratoire Ondes et Milieux Complexes (LOMC), with a financial sponsorship of West African Economic and Monetary Union (UEMOA) under PAES program. SEM and XRD analysis were performed at the laboratory CRISMAT (ENSI Caen), and the authors are grateful to Mr. Nicolas Barrier for his constant support. Furthermore, the authors wish to express their gratitude to the anonymous reviewers for their useful comments on the manuscript.

References

Association française de normalisation (AFNOR). (1995). “Détermination de la teneur en eau pondérale des matériaux.”, AFNOR Editions, Paris.
Association française de normalisation (AFNOR). (2006). “Essais pour déterminer les caractéristiques mécaniques et physiques des granulats - Partie 6: détermination de la masse volumique réelle et du coefficient d’absorption d’eau.”, AFNOR Editions, Paris.
Association française de normalisation (AFNOR). (2008). “Essais pour déterminer les caractéristiques mécaniques et physiques des granulats - Partie 7: détermination de la masse volumique absolue du filler - Méthode au pycnomètre.”, AFNOR Editions, Paris.
ASTM. (2010). “Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass.”, West Conshohocken, PA.
Bernouali, H., Brara, A., Mahdad, M., and Mokhtari, F. (2011). “Caractérisation thermophysique et suivi thermique de deux bâtisses réalisées en blocs de terre comprimée.” Annales du bâtiment et des travaux publics, 86(16), 8–14.
Campbell, G. S., Jungbauer, J. D. J., Bidlake, W. R., and Hungerford, R. D. (1994). “Predicting the effect of temperature on soil thermal conductivity.” J. Soil Sci., 158(5), 307–313.
Carslaw, H., and Jaeger, J. (1986). Conduction of heat in solids, Oxford Science Publications, Clarendon Press, Oxfordshire, U.K.
Couasnet, Y. (2007). “Propriétés et caractéristiques des matériaux de construction.” Le Moniteur, Paris, France.
Decagon, D. (2009). “KD2 pro compliance to ASTM and IEEE standards, application note.” Decagon deviceshttp://www.decagon.com/assets/Uploads/KD2-Pro-Compliance-to-ASTM-and-IEEE-Standards.pdf〉 (Apr. 3, 2014).
Farouki, O. (1981). “Thermal properties of soils.” Cold Region Research and Engineering Laboratory (CRREL), U.S. Army Corps of Engineers, Monograph 81–1, Washington, DC.
IEEE Standards Committee. (1981). IEEE guide for soil thermal resistivity measurements, IEEE, Piscataway, NJ.
ISO. (2006). “Building construction—Sustainability in building construction—Sustainability indicators—Part 1—Framework for development of indicators for buildings.” ISO/TS 21929-1:2006, International Organization for Standardization, Geneva.
ISO. (2007). “Building construction—Sustainability in building construction—Environmental declaration of building products.” ISO 21930:2007, International Organization for Standardization, Geneva.
ISO. (2008). “Building construction—Sustainability in building construction—General principles.” ISO 15392:2008, International Organization for Standardization, Geneva.
ISO. (2010). “Building construction—Sustainability in building construction—Framework for methods of assessment for environmental performance of construction works—Part 1—Buildings.” ISO/TS 21931-1:2010, International Organization for Standardization, Geneva.
Kasthurba, A. K., and Santhanam, M. (2005). “A re-look into the code specifications for the strength evaluation of laterite stone blocks for masonry purposes.” J. Inst. Eng., 86(1–4), 1–6.
Kasthurba, A. K., Santhanam, M., and Mathews, M. S. (2007). “Investigation of laterite stones for building purpose from Malabar region, Kerala state, SW India – Part 1: Field studies and profile characterisation.” Constr. Build. Mater., 21(1), 73–82.
Kersten, S. (1949). “Laboratory research for the determination of the thermal properties of soils, final report, June 1949.” U.S. Dept. of Commerce, Office of Technical Services, Univ. of Minnesota. Engineering Experiment Station, Clearinghouse for Federal Scientific and Technical Information (U.S.).
Kluitenberg, G. J., Ham, J. M., and Bristow, K. L. (1993). “Error analysis of the heat pulse method for measuring soil volumetric heat capacity.” Soil Sci. Soc. Am. J., 57(6), 1444–1451.
Krigsvoll, G., Fumo, M., and Morbiducci, R. (2010). “National and international standardization (International Organization for Standardization and European Committee for Standardization) relevant for sustainability in construction.” Sustainability, 2(12), 3777–3791.
Laurent, J. (1987). “Propriétés thermiques du matériau terre.” Cahiers du centre scientifique et technique du bâtiment, 279(2156), 1–17.
Lawane, A., Messan, A., Pantet, A., Vinai, R., and Thomassin, J. H. (2014). “Local materials for building houses: Laterite valorization in Africa.” Adv. Mater. Res., 875–877, 324–327.
Lawane, A., Pantet, A., Vinai, R., and Thomassin, J. H. (2011). “Etude géologique et géomécanique des latérites de Dano (Burkina Faso) pour une utilisation dans l’habitat.” Les Annales BTP, 86(16), 15–23.
Marmoret, L. (2004). “Exemple de suivi thermique d’une maison expérimentale en bauge mécanisée.” Laboratoire des technologies innovantes, Université Jules Verne de Picardie, Amiens, France.
Mazria, E. (2007). “The 2010 Imperative: A Global Emergency Teach-in.” 〈http://architecture2030.org/action/2010_imperative_global_emergency_teach_in〉 (Apr. 3, 2014).
Meukam, P., Jannot, Y., Noumowe, A., and Kofane, T. C. (2004). “Thermo physical characteristics of economical building materials.” Constr. Build. Mater., 18(6), 437–443.
Nguyen, B. K., and Altan, H. (2011). “Comparative review of five sustainable rating systems.” 2011 Int. Conf. on Green Buildings and Sustainable Cities, Procedia Engineering, Vol. 21, Elsevier, Kidlington, Oxford, U.K., 376–386.
Nougier, P. (2000). “Déformation des roches et transformation de leurs minéraux, initiation à la tectonique.” Sciences de la vie et de la terre, Ellipses, Paris, France.
PANalytical X’Pert HighScore Plus [Computer software]. PANalytical BV, 〈http://www.panalytical.com/Xray-diffraction-software/HighScore-Plus.htm〉 (Mar. 31, 2014).
Recknagel, H., Sprenger, E., Hönmann, W., and Schramek, E-R. (1995). Manuel pratique de génie climatique, tome 1, PYC Éditions, Paris, France.
Turgut, P., Yesilnacar, M. I., and Bulut, H. (2008). “Physico-thermal and mechanical properties of Sanliurfa limestone, Turkey.” Bull. Eng. Geol. Environ., 67(4), 485–490.
Vazquez, E., Miguez, M., Alves, L., Valente, J., and Rossi, G. (2011). “Certifications in construction: A case study comparing LEED and HQE.” WIT Trans. Ecol. Environ., 144, 253–264.
Waranet Solutions. (2007). “Enregistreurs autonomes.” 〈http://www.waranet-solutions.com./page_logiciel_warito.htm〉 (Apr. 3, 2014).
Wyss, U., and Sauret, H. (2007). “Indicateurs de confort dans la technique de la voûte nubienne.” EPFL – rapport intermédiaire, Association La Voûte Nubienne (AVN), Ganges, France.
Yaşar, E., Erdoğan, Y., and Güneyli, H. (2008). “Determination of the thermal conductivity from physico-mechanical properties.” Bull. Eng. Geol. Environ., 67(2), 219–225.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 26Issue 7July 2014

History

Received: Aug 14, 2013
Accepted: Feb 17, 2014
Published online: Apr 21, 2014
Published in print: Jul 1, 2014
Discussion open until: Sep 21, 2014

Permissions

Request permissions for this article.

Authors

Affiliations

Abdou Lawane
Ph.D. Student, LEMC, International Institute for Water and Environmental Engineering, Rue de la Science, 01 BP 594 Ouagadougou 01, Ouagadougou, Burkina Faso; and LOMC, Univ. of Le Havre, COREVA Building, 53 Rue de Prony, BP 540, 76058 Le Havre Cedex, France.
Raffaele Vinai, Ph.D. [email protected]
LEMC, International Institute for Water and Environmental Engineering, Rue de la Science, 01 BP 594 Ouagadougou 01, Ouagadougou, Burkina Faso; and School of Planning, Architecture and Civil Engineering, Queen’s Univ. Belfast, David Keir Building, 39 Stranmillis Rd., Belfast BT9 5AG, U.K. (corresponding author). E-mail: [email protected]
Anne Pantet
Professor, LEMC, International Institute for Water and Environmental Engineering, Rue de la Science, 01 BP 594 Ouagadougou 01, Ouagadougou, Burkina Faso; and LOMC, Univ. of Le Havre, COREVA Building, 53 Rue de Prony, BP 540, 76058 Le Havre Cedex, France.
Jean-Hugues Thomassin
Professor, LEMC, International Institute for Water and Environmental Engineering, Rue de la Science, 01 BP 594 Ouagadougou 01, Ouagadougou, Burkina Faso.
Adamah Messan, Ph.D.
LEMC, International Institute for Water and Environmental Engineering, Rue de la Science, 01 BP 594 Ouagadougou 01, Ouagadougou, Burkina Faso.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share