Technical Papers
Sep 7, 2022

Improving Land-Surface Model Simulations in Irrigated Areas by Incorporating Soil Moisture–Based Irrigation Estimates in Community Land Model

Publication: Journal of Irrigation and Drainage Engineering
Volume 148, Issue 11

Abstract

Currently, land surface models (LSMs) are limited in representing realistic water and energy fluxes owing to the absence of reliable parameterization of irrigation. In this study, a novel method was employed to incorporate irrigation in the Community Land Model (CLM) Version 4.0. Two CLM experiments were set up, designated CLM-default run and CLM-irrigated run. The SM2RAIN algorithm was employed to reproduce the observed precipitation and irrigation using soil moisture (SM) information measured at the Fluxnet sites. The results showed that SM2RAIN reliably reproduced the observed precipitation on a daily timescale (R0.70 for all three sites) but significantly underestimated high-intensity precipitation (bias 0.5  mmday1 for all sites). The bias-corrected SM2RAIN output showed improved representation of observed daily precipitation (R=0.89 and 0.86) and monthly irrigation (R=0.89 and 0.96) at US-Ne1 and US-Ne2, respectively. The SM2RAIN estimated irrigation was input to CLM as independent forcing data along with other atmospheric forcings. The simulated surface energy fluxes from CLM were compared with eddy covariance–based flux tower observations. The results showed that CLM simulated energy fluxes from the CLM-irrigated run improved the representation of turbulent heat fluxes (latent and sensible). Overall, mean bias decreased by 32% and 64% for sensible and latent heat fluxes, respectively. This indicates that SM2RAIN-estimated irrigation is reliable input data for LSMs that potentially improved model representations of surface energy fluxes, which are important for comprehending the complex interactions between land surface and atmosphere in irrigated areas.

Practical Applications

A novel method of estimating actual irrigation amount is presented for incorporating into land surface models (LSMs). The primary goal of the study was more accurate simulation of land surface states and fluxes by better representing agricultural land use. Moreover, this technique may allow numerical weather prediction (NWP) models to more precisely represent land–atmosphere feedback in managed areas, hence improving forecast skill. It was demonstrated in this study that using the novel irrigation method in LSMs can reliably represent surface water and energy fluxes. The findings of this study are very relevant to regional-to-global–scale water and energy cycle research, which has struggled to quantify the consequences of agricultural management practices like irrigation in the past. It is anticipated that improved representation of managed lands will make it possible to provide better weather and climate forecasting when the new irrigation plan is incorporated in NWP models.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request. The CLM forcing data and SM2RAIN MATLAB code are also available on request.

Acknowledgments

We acknowledge the following AmeriFlux sites for their records: US-Ne1, US-Ne2, and US-Ne3. The AmeriFlux data resources were provided by the US Department of Energy’s Office of Science. The authors want to thank Andy Suyker [Principle Investigator (PI)] in particular for providing the missing data. This paper was supported by the SKKU Excellence in Research Award Research Fund, Sungkyunkwan University, 2021.

References

Abramowitz, G., R. Leuning, M. Clark, and A. Pitman. 2008. “Evaluating the performance of land surface models.” J. Clim. 21 (21): 5468–5481. https://doi.org/10.1175/2008JCLI2378.1.
Alexeev, V., D. Nicolsky, V. Romanovsky, and D. Lawrence. 2007. “An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost.” Geophys. Res. Lett. 34 (9). https://doi.org/10.1029/2007GL029536.
Allen, R. 2008. “Quality assessment of weather data and micrometeorological flux-impacts on evapotranspiration calculation.” In Proc., of Annual Meeting of the Society of Agricultural Meteorology of Japan Abstracts of Int. Symp. on Agricultural Meteorology 2008, 25–41. Japan: Society of Agricultural Meteorology of Japan.
Andreadis, K. M., P. Storck, and D. P. Lettenmaier. 2009. “Modeling snow accumulation and ablation processes in forested environments.” Water Resour. Res. 45 (5). https://doi.org/10.1029/2008WR007042.
Betts, A. K., J. H. Ball, A. C. Beljaars, M. J. Miller, and P. A. Viterbo. 1996. “The land surface-atmosphere interaction: A review based on observational and global modeling perspectives.” J. Geophys. Res.: Atmos. 101 (D3): 7209–7225. https://doi.org/10.1029/95JD02135.
Betts, R. 2007. “Implications of land ecosystem-atmosphere interactions for strategies for climate change adaptation and mitigation.” Tellus B: Chem. Phys. Meteorol. 59 (3): 602–615. https://doi.org/10.1111/j.1600-0889.2007.00284.x.
Biggs, T. W., C. A. Scott, A. Gaur, J.-P. Venot, T. Chase, and E. Lee. 2008. “Impacts of irrigation and anthropogenic aerosols on the water balance, heat fluxes, and surface temperature in a river basin.” Water Resour. Res. 44 (12). https://doi.org/10.1029/2008WR006847.
Bonan, G. B. 1996. Land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and users guide. Technical note. Boulder, CO: National Center for Atmospheric Research.
Brocca, L., S. Camici, F. Melone, T. Moramarco, J. Martinez-Fernandez, J.-F. Didon-Lescot, and R. Morbidelli. 2014a. “Improving the representation of soil moisture by using a semi-analytical infiltration model.” Hydrol. Processes 28 (4): 2103–2115. https://doi.org/10.1002/hyp.9766.
Brocca, L., L. Ciabatta, C. Massari, S. Camici, and A. Tarpanelli. 2017. “Soil moisture for hydrological applications: Open questions and new opportunities.” Water 9 (2): 140. https://doi.org/10.3390/w9020140.
Brocca, L., L. Ciabatta, C. Massari, T. Moramarco, S. Hahn, S. Hasenauer, R. Kidd, W. Dorigo, W. Wagner, and V. Levizzani. 2014b. “Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data.” J. Geophys. Res.: Atmos. 119 (9): 5128–5141. https://doi.org/10.1002/2014JD021489.
Brocca, L., C. Massari, L. Ciabatta, T. Moramarco, D. Penna, G. Zuecco, L. Pianezzola, M. Borga, P. Matgen, and J. Martínez-Fernández. 2015. “Rainfall estimation from in situ soil moisture observations at several sites in Europe: An evaluation of the SM2RAIN algorithm.” J. Hydrol. Hydromech. 63 (3): 201–209. https://doi.org/10.1515/johh-2015-0016.
Brocca, L., T. Moramarco, F. Melone, and W. Wagner. 2013. “A new method for rainfall estimation through soil moisture observations.” Geophys. Res. Lett. 40 (5): 853–858. https://doi.org/10.1002/grl.50173.
Brocca, L., A. Tarpanelli, P. Filippucci, W. Dorigo, F. Zaussinger, A. Gruber, and D. Fernández-Prieto. 2018. “How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products.” Int. J. Appl. Earth Obs. Geoinf. 73 (Dec): 752–766. https://doi.org/10.1016/j.jag.2018.08.023.
Carrillo-Rojas, G., H. M. Schulz, J. Orellana-Alvear, A. Ochoa-Sánchez, K. Trachte, R. Célleri, and J. Bendix. 2019. “Atmosphere-surface fluxes modeling for the high Andes: The case of páramo catchments of Ecuador.” Sci. Total Environ. 704 (Feb): 135372. https://doi.org/10.1016/j.scitotenv.2019.135372.
Cheng, W., J. C. Moore, L. Cao, D. Ji, and L. Zhao. 2017. “Simulated climate effects of desert irrigation geoengineering.” Sci. Rep. 7 (1): 1–10. https://doi.org/10.1038/srep46443.
Chirouze, J., et al. 2013. “Inter-comparison of four remote sensing based surface energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate.” Hydrol. Earth Syst. Sci. Discuss. 10 (1): 895–963. https://doi.org/10.5194/hessd-10-895-2013.
Choi, H. I., P. Kumar, and X.-Z. Liang. 2007. “Three-dimensional volume-averaged soil moisture transport model with a scalable parameterization of subgrid topographic variability.” Water Resour. Res. 43 (4). https://doi.org/10.1029/2006WR005134.
Ciabatta, L., C. Massari, L. Brocca, A. Gruber, C. Reimer, S. Hahn, C. Paulik, W. Dorigo, R. Kidd, and W. Wagner. 2018. “SM2RAIN-CCI: A new global long-term rainfall data set derived from ESA CCI soil moisture.” Earth Syst. Sci. Data 10 (1): 267–280. https://doi.org/10.5194/essd-10-267-2018.
Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell. 2000. “Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model.” Nature 408 (6809): 184–187. https://doi.org/10.1038/35041539.
Crow, W., M. van Den Berg, G. Huffman, and T. Pellarin. 2011. “Correcting rainfall using satellite-based surface soil moisture retrievals: The soil moisture analysis rainfall tool (SMART).” Water Resour. Res. 47 (8). https://doi.org/10.1029/2011WR010576.
Dai, Y., et al. 2003. “The common land model.” Bull. Am. Meteorol. Soc. 84 (8): 1013–1024. https://doi.org/10.1175/BAMS-84-8-1013.
Davin, E. L., R. Stöckli, E. B. Jaeger, S. Levis, and S. I. Seneviratne. 2011. “COSMO-CLM2: A new version of the COSMO-CLM model coupled to the Community Land Model.” Clim. Dyn. 37 (9–10): 1889–1907. https://doi.org/10.1007/s00382-011-1019-z.
De Lannoy, G. J. M., P. de Rosnay, and R. H. Reichle. 2016. “Soil moisture data assimilation.” In Handbook of hydrometeorological ensemble forecasting, edited by Q. Duan, F. Pappenberger, J. Thielen, A. Wood, H. Cloke, and J. Schaake, 1–43. Berlin: Springer. https://doi.org/10.1007/978-3-642-40457-3_32-1.
Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy. 1993. Biosphere-atmosphere transfer scheme (BATS) Version 1e as coupled to the NCAR community climate model. Boulder, CO: Univ. Corporation for Atmospheric Research. https://doi.orrg/10.5065/D67W6959.
Doorenbos, J., and W. Pruitt. 1977. “Background and development of methods to predict reference crop evapotranspiration (ETo).” In Appendix II in FAO-ID-24, 108–119. Rome: Food and Agriculture Organization.
Ek, M., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley. 2003. “Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model.” J. Geophys. Res.: Atmos. 108 (D22). https://doi.org/10.1029/2002JD003296.
Eshonkulov, R., A. Poyda, J. Ingwersen, H. D. Wizemann, T. K. Weber, P. Kremer, P. Högy, A. Pulatov, and T. Streck. 2019. “Evaluating multi-year, multi-site data on the energy balance closure of eddy-covariance flux measurements at cropland sites in southwestern Germany.” Biogeosciences 16 (2): 521–540. https://doi.org/10.5194/bg-16-521-2019.
Famiglietti, J., and E. F. Wood. 1994. “Multiscale modeling of spatially variable water and energy balance processes.” Water Resour. Res. 30 (11): 3061–3078. https://doi.org/10.1029/94WR01498.
Felfelani, F., Y. Pokhrel, K. Guan, and D. M. Lawrence. 2018. “Utilizing SMAP soil moisture data to constrain irrigation in the Community Land Model.” Geophys. Res. Lett. 45 (23): 12892–12902. https://doi.org/10.1029/2018GL080870.
Ferguson, C. R., and E. F. Wood. 2011. “Observed land–atmosphere coupling from satellite remote sensing and reanalysis.” J. Hydrometeorol. 12 (6): 1221–1254. https://doi.org/10.1175/2011JHM1380.1.
Foken, T. 2008. “The energy balance closure problem: An overview.” Ecol. Appl. 18 (6): 1351–1367. https://doi.org/10.1890/06-0922.1.
Ghannam, K., T. Nakai, A. Paschalis, C. A. Oishi, A. Kotani, Y. Igarashi, T. O. Kumagai, and G. G. Katul. 2016. “Persistence and memory timescales in root-zone soil moisture dynamics.” Water Resour. Res. 52 (2): 1427–1445. https://doi.org/10.1002/2015WR017983.
Haddeland, I., D. P. Lettenmaier, and T. Skaugen. 2006. “Effects of irrigation on the water and energy balances of the Colorado and Mekong River basins.” J. Hydrol. 324 (1–4): 210–223. https://doi.org/10.1016/j.jhydrol.2005.09.028.
Jacobs, A. F., B. G. Heusinkveld, and A. A. Holtslag. 2008. “Towards closing the surface energy budget of a mid-latitude grassland.” Boundary Layer Meteorol. 126 (1): 125–136. https://doi.org/10.1007/s10546-007-9209-2.
Jaeger, E. B., R. Stöckli, and S. I. Seneviratne. 2009. “Analysis of planetary boundary layer fluxes and land-atmosphere coupling in the regional climate model CLM.” J. Geophys. Res.: Atmos. 114 (D17). https://doi.org/10.1029/2008JD011658.
Jalilvand, E., M. Tajrishy, S. A. G. Z. Hashemi, and L. Brocca. 2019. “Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region.” Remote Sens. Environ. 231 (Sep): 111226. https://doi.org/10.1016/j.rse.2019.111226.
Jiang, L., E. Ma, and X. Deng. 2014. “Impacts of irrigation on the heat fluxes and near-surface temperature in an inland irrigation area of northern China.” Energies 7 (3): 1300–1317. https://doi.org/10.3390/en7031300.
Kanda, M., A. Inagaki, M. O. Letzel, S. Raasch, and T. Watanabe. 2004. “LES study of the energy imbalance problem with eddy covariance fluxes.” Boundary Layer Meteorol. 110 (3): 381–404. https://doi.org/10.1023/B:BOUN.0000007225.45548.7a.
Kim, H., and V. Lakshmi. 2019. “Global dynamics of stored precipitation water in the topsoil layer from satellite and reanalysis data.” Water Resour. Res. 55 (4): 3328–3346. https://doi.org/10.1029/2018WR023166.
Koster, R. D., L. Brocca, W. T. Crow, M. S. Burgin, and G. J. De Lannoy. 2016. “Precipitation estimation using L-band and C-band soil moisture retrievals.” Water Resour. Res. 52 (9): 7213–7225. https://doi.org/10.1002/2016WR019024.
Lawrence, D. M., et al. 2011. “Parameterization improvements and functional and structural advances in version 4 of the Community Land Model.” J. Adv. Model. Earth Syst. 3 (1). https://doi.org/10.1029/2011MS00045.
Lawrence, D. M., et al. 2019. “The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty.” J. Adv. Model. Earth Syst. 11 (12): 4245–4287. https://doi.org/10.1029/2018MS001583.
Lawrence, P. J., and T. N. Chase. 2007. “Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0).” J. Geophys. Res.: Biogeosci. 112 (G1). https://doi.org/10.1029/2006JG000168.
Lawston, P. M., J. A. Santanello Jr., T. E. Franz, and M. Rodell. 2017. “Assessment of irrigation physics in a land surface modeling framework using non-traditional and human-practice datasets.” Hydrol. Earth Syst. Sci. 21 (6): 2953–2966. https://doi.org/10.5194/hess-21-2953-2017.
Lee, Y.-H., H.-J. Lim, K. Ichii, and Y. Li. 2013. “Evaluation of the Community Land Model 3.5 with carbon and nitrogen cycles (CLM3. 5CN) at a Tibetan grassland site.” Asia-Pac. J. Atmos. Sci. 49 (5): 561–570. https://doi.org/10.1007/s13143-013-0050-x.
Leng, G., M. Huang, Q. Tang, H. Gao, and L. R. Leung. 2014. “Modeling the effects of groundwater-fed irrigation on terrestrial hydrology over the conterminous United States.” J. Hydrometeorol. 15 (3): 957–972. https://doi.org/10.1175/JHM-D-13-049.1.
Lievens, H., et al. 2016. “Assimilation of SMOS soil moisture and brightness temperature products into a land surface model.” Remote Sens. Environ. 180 (Jul): 292–304. https://doi.org/10.1016/j.rse.2015.10.033.
Lobell, D. B., and C. Bonfils. 2008. “The effect of irrigation on regional temperatures: A spatial and temporal analysis of trends in California, 1934–2002.” J. Clim. 21 (10): 2063–2071. https://doi.org/10.1175/2007JCLI1755.1.
Nair, A. S., and J. Indu. 2019. “Improvement of land surface model simulations over India via data assimilation of satellite-based soil moisture products.” J. Hydrol. 573 (Jun): 406–421. https://doi.org/10.1016/j.jhydrol.2019.03.088.
Nicolai-Shaw, N., L. Gudmundsson, M. Hirschi, and S. I. Seneviratne. 2016. “Long-term predictability of soil moisture dynamics at the global scale: Persistence versus large-scale drivers.” Geophys. Res. Lett. 43 (16): 8554–8562. https://doi.org/10.1002/2016GL069847.
Nicolsky, D., V. Romanovsky, V. Alexeev, and D. Lawrence. 2007. “Improved modeling of permafrost dynamics in a GCM land-surface scheme.” Geophys. Res. Lett. 34 (8). https://doi.org/10.1029/2007GL029525.
Niu, G.-Y., and Z.-L. Yang. 2006. “Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale.” J. Hydrometeorol. 7 (5): 937–952. https://doi.org/10.1175/JHM538.1.
Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, and L. E. Gulden. 2005. “A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models.” J. Geophys. Res.: Atmos. 110 (D21). https://doi.org/10.1029/2005JD006111.
Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su. 2007. “Development of a simple groundwater model for use in climate models and evaluation with gravity recovery and climate experiment data.” J. Geophys. Res.: Atmos. 112 (D7). https://doi.org/10.1029/2006JD007522.
Oleson, K. W., et al. 2008. “Improvements to the Community Land Model and their impact on the hydrological cycle.” J. Geophys. Res.: Biogeosci. 113 (G1). https://doi.org/10.1029/2007JG000563.
Oleson, K. W., et al. 2010. Technical description of version 4.0 of the Community Land Model (CLM) . Boulder, CO: Univ. Corporation for Atmospheric Research. https://doi.orrg/10.5065/D6FB50WZ.
Overgaard, J., D. Rosbjerg, and M. B. Butts. 2006. “Land-surface modelling in hydrological perspective—A review.” Biogeosciences 3 (2): 229–241. https://doi.org/10.5194/bg-3-229-2006.
Ozdogan, M., M. Rodell, H. K. Beaudoing, and D. L. Toll. 2010. “Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data.” J. Hydrometeorol. 11 (1): 171–184. https://doi.org/10.1175/2009JHM1116.1.
Philip, J., and D. De Vries. 1957. “Moisture movement in porous materials under temperature gradients.” Eos Trans. Am. Geophys. Union 38 (2): 222–232. https://doi.org/10.1029/TR038i002p00222.
Pitman, A. 2003. “The evolution of, and revolution in, land surface schemes designed for climate models.” Int. J. Climatol. 23 (5): 479–510. https://doi.org/10.1002/joc.893.
Pokhrel, Y., N. Hanasaki, S. Koirala, J. Cho, P. J. F. Yeh, H. Kim, S. Kanae, and T. Oki. 2012. “Incorporating anthropogenic water regulation modules into a land surface model.” J. Hydrometeorol. 13 (1): 255–269. https://doi.org/10.1175/JHM-D-11-013.1.
Pokhrel, Y. N., N. Hanasaki, Y. Wada, and H. Kim. 2016. “Recent progress in incorporating human land–water management into global land surface models toward their integration into Earth system models.” Wiley Interdiscip. Rev.: Water 3 (4): 548–574. https://doi.org/10.1002/wat2.1150.
Pryor, S. C., R. C. Sullivan, and T. Wright. 2016. “Quantifying the roles of changing albedo, emissivity, and energy partitioning in the impact of irrigation on atmospheric heat content.” J. Appl. Meteorol. Climatol. 55 (8): 1699–1706. https://doi.org/10.1175/JAMC-D-15-0291.1.
Puma, M. J., and B. I. Cook. 2010. “Effects of irrigation on global climate during the 20th century.” J. Geophys. Res.: Atmos. 115 (D16). https://doi.org/10.1029/2010JD014122.
Qian, Y., M. Huang, B. Yang, and L. K. Berg. 2013. “A modeling study of irrigation effects on surface fluxes and land–air–cloud interactions in the southern Great Plains.” J. Hydrometeorol. 14 (3): 700–721. https://doi.org/10.1175/JHM-D-12-0134.1.
Rahman, K. U., S. Shang, M. Shahid, and Y. Wen. 2019. “Performance assessment of SM2RAIN-CCI and SM2RAIN-ASCAT precipitation products over Pakistan.” Remote Sens. 11 (17): 2040. https://doi.org/10.3390/rs11172040.
Rodell, M., et al. 2004. “The global land data assimilation system.” Bull. Am. Meteorol. Soc. 85 (3): 381–394. https://doi.org/10.1175/BAMS-85-3-381.
Sacks, W. J., B. I. Cook, N. Buenning, S. Levis, and J. H. Helkowski. 2009. “Effects of global irrigation on the near-surface climate.” Clim. Dyn. 33 (2–3): 159–175. https://doi.org/10.1007/s00382-008-0445-z.
Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär. 2006. “Land–atmosphere coupling and climate change in Europe.” Nature 443 (7108): 205–209. https://doi.org/10.1038/nature05095.
Stöckli, R., P. L. Vidale, A. Boone, and C. Schär. 2007. “Impact of scale and aggregation on the terrestrial water exchange: Integrating land surface models and Rhone catchment observations.” J. Hydrometeorol. 8 (5): 1002–1015. https://doi.org/10.1175/JHM613.1.
Suyker, A. 2016. AmeriFlux US-Ne3 Mead-rainfed maize-soybean rotation site data set. Lincoln, NE: Univ. of Nebraska–Lincoln.
Suyker, A. E., and S. B. Verma. 2009. “Evapotranspiration of irrigated and rainfed maize–soybean cropping systems.” Agric. For. Meteorol. 149 (3–4): 443–452. https://doi.org/10.1016/j.agrformet.2008.09.010.
Tang, R., Z.-L. Li, Y. Jia, C. Li, K.-S. Chen, X. Sun, and J. Lou. 2013. “Evaluating one-and two-source energy balance models in estimating surface evapotranspiration from Landsat-derived surface temperature and field measurements.” Int. J. Remote Sens. 34 (9–10): 3299–3313. https://doi.org/10.1080/01431161.2012.716529.
Toure, A. M., M. Rodell, Z.-L. Yang, H. Beaudoing, E. Kim, Y. Zhang, and Y. Kwon. 2016. “Evaluation of the snow simulations from the Community Land Model, Version 4 (CLM4).” J. Hydrometeorol. 17 (1): 153–170. https://doi.org/10.1175/JHM-D-14-0165.1.
Umair, M., D. Kim, R. L. Ray, and M. Choi. 2018. “Estimating land surface variables and sensitivity analysis for CLM and VIC simulations using remote sensing products.” Sci. Total Environ. 633 (Aug): 470–483. https://doi.org/10.1016/j.scitotenv.2018.03.138.
Vörösmarty, C. J., and D. Sahagian. 2000. “Anthropogenic disturbance of the terrestrial water cycle.” BioScience 50 (9): 753–765. https://doi.org/10.1641/0006-3568(2000)050[0753:ADOTTW]2.0.CO;2.
Wada, Y., et al. 2017. “Human–water interface in hydrological modelling: Current status and future directions.” Hydrol. Earth Syst. Sci. 21 (8): 4169–4193. https://doi.org/10.5194/hess-21-4169-2017.
Wada, Y., L. P. H. van Beek, and M. F. P. Bierkens. 2011. “Modelling global water stress of the recent past: On the relative importance of trends in water demand and climate variability.” Hydrol. Earth Syst. Sci. 15 (12): 3785–3808. https://doi.org/10.5194/hess-15-3785-2011.
Wilson, K., et al. 2002. “Energy balance closure at FLUXNET sites.” Agric. For. Meteorol. 113 (1–4): 223–243. https://doi.org/10.1016/S0168-1923(02)00109-0.
Wisser, D., S. Frolking, E. M. Douglas, B. M. Fekete, C. J. Vörösmarty, and A. H. Schumann. 2008. “Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets.” Geophys. Res. Lett. 35 (24). https://doi.org/10.1029/2008GL035296.
Worley, P. H., M. Vertenstein, and A. P. Craig. 2011. “Community climate system model.” In Encyclopedia of parallel computing, edited by D. Padua. Boston, MA: Springer. https://doi.org/10.1007/978-0-387-09766-4_376.
Yongjiu, D., and Z. Qingcun. 1997. “A land surface model (IAP94) for climate studies. Part I: Formulation and validation in off-line experiments.” Adv. Atmos. Sci. 14 (4): 433–460. https://doi.org/10.1007/s00376-997-0063-4.
Zaitchik, B. F., M. Rodell, and F. Olivera. 2010. “Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme.” Water Resour. Res. 46 (6). https://doi.org/10.1029/2009WR007811.
Zeng, Y., Z. Xie, and S. Liu. 2017. “Seasonal effects of irrigation on land–atmosphere latent heat, sensible heat, and carbon fluxes in semiarid basin.” Earth Syst. Dyn. 8 (1): 113–127. https://doi.org/10.5194/esd-8-113-2017.
Zhang, M., Y. Li, J. Liu, J. Wang, Z. Zhang, and N. Xiao. 2022. “Changes of soil water and heat transport and yield of tomato (Solanum lycopersicum) in greenhouses with micro-sprinkler irrigation under plastic film.” Agronomy 12 (3): 664. https://doi.org/10.3390/agronomy12030664.
Zhao, W., and A. Li. 2015. “A review on land surface processes modelling over complex terrain.” Adv. Meteorol. 2015: 607181. https://doi.org/10.1155/2015/607181.
Zohaib, M., H. Kim, and M. Choi. 2019. “Detecting global irrigated areas by using satellite and reanalysis products.” Sci. Total Environ. 677 (Aug): 679–691. https://doi.org/10.1016/j.scitotenv.2019.04.365.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 148Issue 11November 2022

History

Received: Jun 14, 2021
Accepted: Jun 30, 2022
Published online: Sep 7, 2022
Published in print: Nov 1, 2022
Discussion open until: Feb 7, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Assistant Professor, Dept. of Civil, National Univ. of Technology, Islamabad 44000, Pakistan. ORCID: https://orcid.org/0000-0002-2061-7716
Researcher, Département de Géographie, Université de Montréal, Montréal, QC, Canada H2V 2B8. ORCID: https://orcid.org/0000-0002-7651-9015
Professor, School of Civil, Architectural Engineering and Landscape Architecture, Sungkyunkwan Univ., Suwon 440-746, Republic of Korea; Dept. of Water Resources, Graduate School of Water Resources, Sungkyunkwan Univ., 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share