Technical Papers
Nov 22, 2021

Numerical Simulation of Turbulent Jet Scour through Implementation of a Single Phase Eulerian Model

Publication: Journal of Irrigation and Drainage Engineering
Volume 148, Issue 2

Abstract

Particle transport by fluid is probably one of the most difficult and involved subjects among fluid dynamics, with many important issues in this field still to be fully understood. The main purpose in this work was to advance the capabilities of the computational fluid dynamics (CFD) code caffa3d so to include effective numerical modeling of particle transport by turbulent fluid flow. An Eulerian mixture model was selected wherein particles are not addressed individually but rather as a whole, incorporating their effect by means of an effective local viscosity. Numerical simulation of local scour caused by a vertical impinging jet on a sand sediment bed was carried out. The nozzle velocity value were changed in order to analyze the influence of the erosion parameter in the equilibrium erosion value. The influence of internal friction angle and porosity were also analyzed. The results achieved show that the model adequately represents the different physical processes that drive the evolution of the fluid–particle mixture, reaching a good quantitative match with the results previously reported in the bibliography.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

Thanks are due to the National Agency for Research and Innovation (ANII), Uruguay for financing the project “María Viñas Fund—Numerical simulation of dispersion of settled particulate material. Application to an industrial atmospheric emission in Montevideo” that allowed the initial development of the module presented in this paper.

References

Aderibigbe, O., and N. Rajaratnam. 1996. “Erosion of loose beds by submerged circular impinging vertical turbulent jets.” J. Hydraul. Res. 34 (1): 19–33. https://doi.org/10.1080/00221689609498762.
Aderibigbe, O., and N. Rajaratnam. 1998. “Effect of sediment gradation on erosion by plane turbulent wall jet.” J. Hydraul. Eng. 124 (10): 1034–1042. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:10(1034).
Al-Husseini, T., A. S. Al-Madhhachi, and Z. Naser. 2020. “Laboratory experiments and numerical model of local scour around submerged sharp crested weir.” J. King Saud Univ. Eng. Sci. 32 (3): 167–176. https://doi.org/10.1016/j.jksues.2019.01.001.
Berg, P., et al. 2015. “The computational fluid dynamics rupture challenge 2013—Phase II: Variability of hemodynamic simulations in two intracranial aneurysms.” J. Biomech. Eng. 137 (12): 121008. https://doi.org/10.1115/1.4031794.
Draper, M., A. Guggeri, and G. Usera. 2016. “Modelling one row of horns rev wind farm with the actuator line model with coarse resolution.” J. Phys. Conf. Ser. 753 (8): 082028. https://doi.org/10.1088/1742-6596/753/8/082028/meta.
Fernandez, G., M. Mendina, N. Rezzano, M. D’Angelo, and G. Usera. 2018. “Numerical simulation of atmospheric pollutants dispersion in an urban environment.” In Proc., 10th Int. Conf. on Computational Fluid Dynamics (ICCFD10), 1–16. Reston, VA: ASCE.
Fernandez, G., M. Mendina, and G. Usera. 2020. “Heterogeneous computing (CPU–GPU) for pollution dispersion in an urban environment.” Computation 8 (3): 3. https://doi.org/10.3390/computation8010003.
Gorb, Y., O. Mierk, L. Rivkind, and D. Kuzminb. 2014. “Finite element simulation of three-dimensional particulate flows using mixture models.” J. Comput. Appl. Math. 270 (Nov): 443–450. https://doi.org/10.1016/j.cam.2013.12.020.
Guleria, S. D., and D. V. Patil. 2020. “Experimental investigations of crater formation on granular bed subjected to an air-jet impingement.” Phys. Fluids 32 (5): 053309. https://doi.org/10.1063/5.0006613.
Hanson, G. J., and K. R. Cook. 2004. “Apparatus, test procedures, and analytical methods to measure soil erodibility in situ.” Appl. Eng. Agric. 20 (14): 455–462. https://doi.org/10.13031/2013.16492.
Hunter, T. N., J. Peakall, T. J. Unsworth, M. H. Acun, G. Keevil, H. Rice, and S. Biggs. 2013. “The influence of system scale on impinging jet sediment erosion: Observed using novel and standard measurement techniques.” Chem. Eng. Res. Des. 91 (4): 722–734. https://doi.org/10.1016/j.cherd.2013.02.002.
Karamigolbaghi, M., S. M. Ghaneeizada, J. F. Atkinsona, S. J. Bennettb, and R. Wellsc. 2017. “Critical assessment of jet erosion test methodologies for cohesive soil and sediment.” Geomorphology 295 (Oct): 529–536. https://doi.org/10.1016/j.geomorph.2017.08.005.
Khosronejad, A., J. Kozarek, M. Palmsten, and F. Sotiropoulos. 2015. “Numerical simulation of large dunes in meandering streams and rivers with in-stream rock structures.” Adv. Water Resour. 81 (Jul): 45–61. https://doi.org/10.1016/j.advwatres.2014.09.007.
Kleinstreuer, C., and Z. Zhang. 2009. “An adjustable triple-bifurcation unit model for air-particle flow simulations in human tracheobronchial airways.” J. Biomech. Eng. 131 (2): 021007. https://doi.org/10.1115/1.3005339.
Kuang, S., C. LaMarche, J. Curtis, and A. Yu. 2013. “Discrete particle simulation of jet-induced cratering of a granular bed.” Powder Technol. 239 (May): 319–336. https://doi.org/10.1016/j.powtec.2013.02.017.
Lai, A., and F. Chen. 2006. “Modeling particle deposition and distribution in a chamber with a two-equation Reynolds-averaged Navier-Stokes model.” J. Aerosol. Sci. 37 (12): 1770–1780. https://doi.org/10.1016/j.jaerosci.2006.06.008.
Lalli, F., P. G. Esposito, R. Piscopia, and R. Verzicco. 2005. “Fluid–particle flow simulation by averaged continuous model.” Comput. Fluids 34 (9): 1040–1061. https://doi.org/10.1016/j.compfluid.2004.08.004.
Lalli, F., P. G. Esposito, and R. Verzicco. 2006. “A constitutive equation for fluid-particle flow simulation.” Int. J. Offshore Polar Eng. 16 (1): 18–24.
Liang, L., H. X. Yu, and F. Bombardelli. 2017. “A general mixture model for sediment laden flows.” Adv. Water Resour. 107 (Sep): 108–125. https://doi.org/10.1016/j.advwatres.2017.06.012.
Liao, C., Y. Chang, C. Lin, and J. McDonough. 2010. “Simulating flows with moving rigid boundary using immersed-boundary method.” Comput. Fluids 39 (1): 152–167. https://doi.org/10.1016/j.compfluid.2009.07.011.
Mendina, M. 2018. “Simulación numérica de flujos fluido partícula mediante la implementación de un modelo euleriano de una sola fase.” Ph.D. thesis, Facultad de Ingeniería–Instituto de Mecánica de los Fluidos e Ingeniería Ambiental, Universidad de la Republica.
Mendina, M., M. Draper, A. P. Kelm, G. Narancio, and G. Usera. 2014. “A general purpose parallel block structured open source incompressible flow solver.” Cluster Comput. 17 (2): 231–241. https://doi.org/10.1007/s10586-013-0323-2.
Mercier, F., S. Bonelli, P. Pinettes, F. Golay, F. Anselmet, and P. Philippe. 2014. “Comparison of CFD simulations with experimental jet erosion tests results.” J. Hydraul. Eng. 140 (5): 33.
Montazeria, H., B. Blockena, and J. Hensen. 2015. “Evaporative cooling by water spray systems: CFD simulation, experimental validation and sensitivity analysis.” Build. Environ. 83 (Jan): 129–141. https://doi.org/10.1016/j.buildenv.2014.03.022.
Muhle, F., et al. 2018. “Blind test comparison on the wake behind a yawed wind turbine.” Wind Energy Sci. 3 (2): 883–903. https://doi.org/10.5194/wes-3-883-2018.
Qian, Z. D., X. Q. Hu, W. X. Huai, and W. Xue. 2010. “Numerical simulation of sediment erosion by submerged jets using an Eulerian model.” Sci. China Technol. Sci. 53 (12): 3324–3330. https://doi.org/10.1007/s11431-010-4165-3.
Rouse, H. 1938. Fluid mechanics for hydraulic. New York: McGraw-Hill.
Safa, R., and A. Soltani Goharrizi. 2014. “CFD simulation of an industrial hydrocyclone with Eulerian–Eulerian approach.” Int. J. Min. Sci. Technol. 24 (5): 643–648. https://doi.org/10.1016/j.ijmst.2014.07.010.
Samma, H., A. Khosrojerd, M. Rostam-Abadi, M. Mehraein, and Y. Cataño-Lopera. 2020. “Numerical simulation of scour and flow field over movable bed induced by a submerged wall jet.” J. Hydroinf. 22 (2): 385–401. https://doi.org/10.2166/hydro.2020.091.
Sassi, P., J. Freiria, P. La Paz, M. Mendina, M. Draper, and G. Usera. 2017. “Coupled discrete element and finite volume methods for simulating loaded elastic fishnets in interaction with fluid.” Comput. Fluids 156 (Oct): 200–208. https://doi.org/10.1016/j.compfluid.2017.07.007.
Smagorinsky, J. 1963. “General circulation experiments with the primitive equations: I. The basic experiment.” Mon. Weather Rev. 91 (3): 99–164. https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2.
Stanislas, M., J. Jimenez, and I. Marusic. 2015. Wall turbulence 2. Understanding and modelling. New York: Springer.
Steinman, A. A., et al. 2013. “Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: The ASME 2012 summer bioengineering conference CFD challenge.” J. Biomech. Eng. 135 (2): 021016. https://doi.org/10.1115/1.4023382.
Stovern, M., H. Guzmán, K. P. Rine, O. Felix, M. King, W. P. Ela, E. A. Betterton, and A. E. Sáez. 2016. “Windblown dust deposition forecasting and spread of contamination around mine tailings.” Atmosphere 7 (2): 16. https://doi.org/10.3390/atmos7020016.
Subramaniam, S. 2013. “Lagrangian–Eulerian methods for multiphase flows.” Prog. Energy Combust. Sci. 39 (2–3): 215–245. https://doi.org/10.1016/j.pecs.2012.10.003.
Ungarish, M. 1993. Hydrodynamics of suspensions—Fundamentals of centrifugal and gravity separation. New York: Springer.
Usera, G., C. Chreties, M. Mendina, G. Simarro, and L. Teixeira. 2010a. “Avances en la modelación numérica del fenómeno de socavación local en pilas.” In Proc., Memorias del 24 Congreso Latinoamericano de Hidráulica. Montevideo, Uruguay: Universidad de la República.
Usera, G., M. Mendina, and R. Terra. 2010b. “m-caffa3d.mb: Simulación numérica micro-climática.” In Proc., Memorias del 24 Congreso Latinoamericano de Hidráulica. Montevideo, Uruguay: Universidad de la República.
Usera, G., A. Vernet, and J. A. Ferré. 2008. “A parallel block-structured finite volume method for flows in complex geometry with sliding interfaces.” Flow Turbul. Combust. 81 (3): 471–495. https://doi.org/10.1007/s10494-008-9153-3.
Yeh, P. H., K. A. Chang, J. Henriksen, B. Edge, P. Chang, A. Silver, and A. Vargas. 2009. “Large-scale laboratory experiment on erosion of sand beds by moving circular vertical jets.” Ocean Eng. 36 (3): 248–255. https://doi.org/10.1016/j.oceaneng.2008.11.006.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 148Issue 2February 2022

History

Received: Jun 14, 2021
Accepted: Oct 18, 2021
Published online: Nov 22, 2021
Published in print: Feb 1, 2022
Discussion open until: Apr 22, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Instituto de Mecánica de los Fluidos e Ingeniería Ambiental, School of Engineering, Universidad de la República, Julio Herrera y Reissig 565, Montevideo, CP 11300, Uruguay (corresponding author). ORCID: https://orcid.org/0000-0003-0929-9857. Email: [email protected]
Instituto de Mecánica de los Fluidos e Ingeniería Ambiental, School of Engineering, Universidad de la República, Julio Herrera y Reissig 565, Montevideo, CP 11300, Uruguay. ORCID: https://orcid.org/0000-0002-6587-9162

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share