Technical Papers
Sep 11, 2021

Assessment of the Performance of a Modified USBR Type II Stilling Basin by a Validated CFD Model

Publication: Journal of Irrigation and Drainage Engineering
Volume 147, Issue 11

Abstract

The adaptation of existing dams is of paramount importance to face the challenge posed by climate change and new legal frameworks. Thus, it is crucial to optimize the design of stilling basins to reduce the hydraulic jump dimensions without jeopardizing the energy dissipation in the structure. A numerical model was developed to simulate a US Bureau of Reclamation Type II basin. The model was validated with a specifically designed physical model and then was used to simulate and test the performance of the basin after adding a second row of chute blocks. The results showed a reduction in the hydraulic jump dimensions in terms of the sequent depth ratio and the roller length, which were respectively 2.5% and 1.4% lower in the modified design. These results would allow an estimated increase of the discharge in the basin close to 10%. Furthermore, this new design had 1.2% higher efficiency. Consequently, the modifications proposed for the basin design suggest improved performance of the structure. The issue of the hydraulic jump length estimation also was discussed, and different approaches were introduced and compared. These methods follow a structured and systematic procedure and gave consistent results for the developed models.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models and code generated or used during the study appear in the published article.

Acknowledgments

The authors acknowledge the collaboration of the Hydraulics Laboratory of the Department of Hydraulic Engineering and Environment from Universitat Politècnica de València (UPV) and their technicians Juan Carlos Edo and Joaquín Oliver in the construction of the experimental device used for the numerical model setup and validation. The work was supported by the research project “La aireación del flujo y su implementación en prototipo para la mejora de la disipación de energía de la lámina vertiente por resalto hidráulico en distintos tipos de presas” (BIA2017-85412-C2-1-R), funded by the Spanish Agencia Estatal de Investigación and FEDER.

References

Bakhmeteff, B. A., and A. E. Matzke. 1936. “The hydraulic jump in terms of dynamic similarity.” Trans. Am. Soc. Civ. Eng. 101 (1): 630–647. https://doi.org/10.1061/TACEAT.0004708.
Bayon, A., J. F. Macián-Pérez, F. J. Vallés-Morán, and P. A. López-Jiménez. 2019. “Effect of RANS turbulence model in hydraulic jump CFD simulations.” In Proc., E-proceedings of the 38th IAHR World Congress, 1912–1920. Madrid, Spain: International Association for Hydro-Environment Engineering and Research.
Bayon, A., D. Valero, R. García-Bartual, F. J. Vallés-Morán, and P. A. López-Jiménez. 2016. “Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump.” Environ. Modell. Software 80 (Jun): 322–335. https://doi.org/10.1016/j.envsoft.2016.02.018.
Bayon-Barrachina, A., and P. A. Lopez-Jimenez. 2015. “Numerical analysis of hydraulic jumps using OpenFOAM.” J. Hydroinf. 17 (4): 662–678. https://doi.org/10.2166/hydro.2015.041.
Bélanger, J. B. 1841. Notes sur l’hydraulique, 223. Paris: Ecole Royale Des Ponts et Chaussées.
Bennett, N. D., et al. 2013. “Characterising performance of environmental models.” Environ. Modell. Software 40 (Feb): 1–20. https://doi.org/10.1016/j.envsoft.2012.09.011.
Biswas, R., and R. C. Strawn. 1998. “Tetrahedral and hexahedral mesh adaptation for CFD problems.” Appl. Numer. Math. 26 (1–2): 135–151. https://doi.org/10.1016/S0168-9274(97)00092-5.
Blocken, B., and C. Gualtieri. 2012. “Ten iterative steps for model development and evaluation applied to computational fluid dynamics for environmental fluid mechanics.” Environ. Modell. Software 33 (Jul): 1–22. https://doi.org/10.1016/j.envsoft.2012.02.001.
Bombardelli, F. A. 2012. “Computational multi-phase fluid dynamics to address flows past hydraulic structures.” In Proc., 4th IAHR Int. Symp. on Hydraulic Structures, 9–11. Madrid, Spain: International Association for Hydro-Environment Engineering and Research.
Bombardelli, F. A., I. Meireles, and J. Matos. 2011. “Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways.” Environ. Fluid Mech. 11 (3): 263–288. https://doi.org/10.1007/s10652-010-9188-6.
Brethour, J. M., and C. W. Hirt. 2009. Drift model for two-component flows. New York: Flow Science.
Carrillo, J. M., L. G. Castillo, F. Marco, and J. T. García. 2020. “Experimental and numerical analysis of two-phase flows in plunge pools.” J. Hydraul. Eng. 146 (6): 04020044. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001763.
Carvalho, R. F., C. M. Lemos, and C. M. Ramos. 2008. “Numerical computation of the flow in hydraulic jump stilling basins.” J. Hydraul. Res. 46 (6): 739–752. https://doi.org/10.1080/00221686.2008.9521919.
Celik, I. B., U. Ghia, P. J. Roache, and C. J. Freitas. 2008. “Procedure for estimation and reporting of uncertainty due to discretization in CFD applications.” ASME J. Fluids Eng. 130 (7): 8. https://doi.org/10.1115/1.2960953.
Chanson, H., and T. Brattberg. 2000. “Experimental study of the air–water shear flow in a hydraulic jump.” Int. J. Multiphase Flow 26 (4): 583–607. https://doi.org/10.1016/S0301-9322(99)00016-6.
Chanson, H., and C. Gualtieri. 2008. “Similitude and scale effects of air entrainment in hydraulic jumps.” J. Hydraul. Res. 46 (1): 35–44. https://doi.org/10.1080/00221686.2008.9521841.
Fernández-Bono, J. F., and F. J. Vallés-Morán. 2006. “Criterios metodológicos de adaptación del diseño de cuencos de disipación de energía a pie de presa con resalto hidráulico, a caudales superiores a los de diseño” [Methodological criteria for the stilling basin design adpatation to larger discharges than those considered in the design].” In Proc., 22nd Congreso Latinoamericano de Hidráulica. Madrid, Spain: International Association for Hydro-Environment Engineering and Research.
Habibzadeh, A., N. Rajaratnam, and M. Loewen. 2019. “Characteristics of the flow field downstream of free and submerged hydraulic jumps.” Proc. Inst. Civ. Eng. Water Manage. 172 (4): 180–194. https://doi.org/10.1680/jwama.17.00004.
Hager, W. H. 1992. Energy dissipators and hydraulic jump. Berlin: Springer.
Hager, W. H., and R. Bremen. 1989. “Classical hydraulic jump: Sequent depths.” J. Hydraul. Res. 27 (5): 565–585. https://doi.org/10.1080/00221688909499111.
Hager, W. H., R. Bremen, and N. Kawagoshi. 1990. “Classical hydraulic jump: Length of roller.” J. Hydraul. Res. 28 (5): 591–608. https://doi.org/10.1080/00221689009499048.
Heller, V. 2011. “Scale effects in physical hydraulic engineering models.” J. Hydraul. Res. 49 (3): 293–306. https://doi.org/10.1080/00221686.2011.578914.
Hirsch, C. 2007. Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics. Hoboken, NJ: Wiley.
Hirt, C. W., and B. D. Nichols. 1981. “Volume of fluid (VOF) method for the dynamics of free boundaries.” J. Comput. Phys. 39 (1): 201–225. https://doi.org/10.1016/0021-9991(81)90145-5.
Jesudhas, V., R. Balachandar, V. Roussinova, and R. Barron. 2018. “Turbulence characteristics of classical hydraulic jump using DES.” J. Hydraul. Eng. 144 (6): 04018022. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001427.
Keyes, D., A. Ecer, N. Satofuka, P. Fox, and J. Periaux. 2000. Parallel computational fluid dynamics’ 99: Towards teraflops, optimization and novel formulations. Amsterdam, Netherlands: Elsevier.
Kirkgöz, M. S., and M. Ardiçlioğlu. 1997. “Velocity profiles of developing and developed open channel flow.” J. Hydraul. Eng. 123 (12): 1099–1105. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:12(1099).
Kramer, M., and D. Valero. 2020. “Turbulence and self-similarity in highly aerated shear flows: The stable hydraulic jump.” Int. J. Multiphase Flow 129 (Aug): 103316. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103316.
Macián-Pérez, J. F., A. Bayón, R. García-Bartual, P. Amparo López-Jiménez, and F. J. Vallés-Morán. 2020a. “Characterization of structural properties in high Reynolds hydraulic jump based on CFD and physical modeling approaches.” J. Hydraul. Eng. 146 (12): 04020079. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001820.
Macián-Pérez, J. F., R. García-Bartual, B. Huber, A. Bayon, and F. J. Vallés-Morán. 2020b. “Analysis of the flow in a typified USBR II stilling basin through a numerical and physical modeling approach.” Water 12 (1): 227. https://doi.org/10.3390/w12010227.
Macián-Pérez, J. F., B. Huber, A. Bayón, R. García-Bartual, and F. J. Vallés-Morán. 2019. “Influencia de la elección del modelo de turbulencia en el análisis numérico CFD de un cuenco amortiguador tipificado USBR II” [Influence of the turbulence model on the CFD analysis of a typified USBR II stilling basin].” In Proc., 6th Jorandas de Ingeniería Del Agua. Toledo, Spain: Univ. of Castilla-La Mancha.
Macián-Pérez, J. F., F. J. Vallés-Morán, S. Sánchez-Gómez, M. De-Rossi-Estrada, and R. García-Bartual. 2020c. “Experimental characterization of the hydraulic jump profile and velocity distribution in a stilling basin physical model.” Water 12 (6): 1758. https://doi.org/10.3390/w12061758.
McCorquodale, J. A., and A. Khalifa. 1983. “Internal flow in hydraulic jumps.” J. Hydraul. Eng. 109 (5): 684–701. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:5(684).
McDonald, P. W. 1971. “The computation of transonic flow through two-dimensional gas turbine cascades.” In Proc., ASME 1971 Int. Gas Turbine Conf. and Products Show. New York: American Society of Mechanical Engineers.
Ministerio para la Transición Ecológica y el Reto Demográfico. 2018. Normas Técnicas de Seguridad para las Grandes Presas y sus Embalses [Technical Guidelines for Large Dams and Reservoirs Safety]. Madrid, Spain: Gobierno de España.
Montano, L., and S. Felder. 2019. “An experimental study of air–water flows in hydraulic jumps on flat slopes.” J. Hydraul. Res. 58 (5): 767–777. https://doi.org/10.1080/00221686.2019.1671512.
Movahed, S. A. M., J. Mozaffari, D. Davoodmaghami, and M. Akbari. 2018. “A semi-analytical equation to estimate hydraulic jump length.” Period. Polytechn., Civ. Eng. 62 (4): 1001–1006.
Murzyn, F., D. Mouaze, and J. R. Chaplin. 2005. “Optical fibre probe measurements of bubbly flow in hydraulic jumps.” Int. J. Multiphase Flow 31 (1): 141–154. https://doi.org/10.1016/j.ijmultiphaseflow.2004.09.004.
Padulano, R., O. Fecarotta, G. Del Giudice, and A. Carravetta. 2017. “Hydraulic design of a USBR Type II stilling basin.” J. Irrig. Drain. Eng. 143 (5): 04017001. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001150.
Peterka, A. J. 1978. Hydraulic design of stilling basins and energy dissipaters. Washington, DC: Dept. of the Interior.
Rajaratnam, N. 1965. “The hydraulic jump as a well jet.” J. Hydraul. Div. 91 (5): 107–132. https://doi.org/10.1061/JYCEAJ.0001299.
Schulz, H. E., A. L. A. Simões, and J. D. Nóbrega. 2015. “Roller lengths, sequent depths, surface profiles for pre-design of dissipation basins.” In Proc., 2nd IAHR Int. Workshop on Hydraulic Structures. Madrid, Spain: International Association for Hydro-Environment Engineering and Research.
Soori, S., H. Babaali, and N. Soori. 2017. “An optimal design of the inlet and outlet obstacles at USBR II Stilling Basin.” Int. J. Sci. Eng. Appl. 6 (5): 17. https://doi.org/10.7753/IJSEA0605.1001.
Stojnic, I., M. Pfister, J. Matos, and A. Schleiss. 2020. “Bottom pressure characteristics in a stilling basin downstream of a stepped spillway for two different chute slopes.” In Proc., 8th IAHR Int. Symp. on Hydraulic Structures ISHS2020. Madrid, Spain: International Association for Hydro-Environment Engineering and Research.
Stojnic, I., M. Pfister, J. Matos, and A. J. Schleiss. 2021. “Effect of 30-degree sloping smooth and stepped chute approach flow on the performance of a classical stilling basin.” J. Hydraul. Eng. 147 (2): 04020097. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001840.
Toso, J. W., and C. E. Bowers. 1988. “Extreme pressures in hydraulic-jump stilling basins.” J. Hydraul. Eng. 114 (8): 829–843. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(829).
Valero, D., D. B. Bung, and B. M. Crookston. 2018. “Energy dissipation of a Type III basin under design and adverse conditions for stepped and smooth spillways.” J. Hydraul. Eng. 144 (7): 04018036. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001482.
Valero, D., R. García-Bartual, and J. Marco. 2015. “Optimisation of stilling basin chute blocks using a calibrated multiphase RANS model.” In Proc., 5th Int. Junior Researcher and Engineer Workshop on Hydraulic Structures. Madrid, Spain: International Association for Hydro-Environment Engineering and Research.
Valero, D., N. Viti, and C. Gualtieri. 2019. “Numerical simulation of hydraulic jumps. Part 1: Experimental data for modelling performance assessment.” Water 11 (1): 36. https://doi.org/10.3390/w11010036.
Viti, N., D. Valero, and C. Gualtieri. 2019. “Numerical simulation of hydraulic jumps. Part 2: Recent results and future outlook.” Water 11 (1): 28. https://doi.org/10.3390/w11010028.
Wang, H., and H. Chanson. 2015. “Experimental study of turbulent fluctuations in hydraulic jumps.” J. Hydraul. Eng. 141 (7): 04015010. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001010.
Witt, A., J. Gulliver, and L. Shen. 2015. “Simulating air entrainment and vortex dynamics in a hydraulic jump.” Int. J. Multiphase Flow 72 (Sep): 165–180. https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.012.
Yakhot, V., S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziale. 1992. “Development of turbulence models for shear flows by a double expansion technique.” Phys. Fluids A 4 (7): 1510–1520. https://doi.org/10.1063/1.858424.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 147Issue 11November 2021

History

Received: May 7, 2021
Accepted: Jul 24, 2021
Published online: Sep 11, 2021
Published in print: Nov 1, 2021
Discussion open until: Feb 11, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Research Engineer, Research Institute of Water and Environmental Engineering, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain (corresponding author). ORCID: https://orcid.org/0000-0002-4457-9507. Email: [email protected]
Francisco José Vallés-Morán [email protected]
Professor, Research Institute of Water and Environmental Engineering, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain. Email: [email protected]
Rafael García-Bartual [email protected]
Professor, Research Institute of Water and Environmental Engineering, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Investigation of a Negative Step Effect on Stilling Basin by Using CFD, Entropy, 10.3390/e24111523, 24, 11, (1523), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share