Abstract

The curve number (CN) method is the most widely used method to estimate the depth of runoff resulting from a given depth of rainfall. However, there are still doubts about the effect of rainfall characteristics and soil moisture conditions on the method’s parameters (CN, and the standard initial abstraction ratio, λ). In this study, design rainfall distributions were used along with Hortonian infiltration characteristics to calculate CN and λ values for a highly clayey soil (>80%). Prerainfall infiltration conditions were characterized by the measured initial soil moisture content, and Hortonian infiltration model was obtained from experimental infiltration test measurements. The main results show that there is no influence of initial infiltration rates on CN values, and rainfall duration generates substantial influence on CN. The CN is inversely related to rainfall depth, and λ is dependent on the initial soil moisture. Further, neither tabulated CN nor standard λ corresponds to the simulated values obtained in this case. Therefore, these findings suggest that the method’s parameters should be specifically adapted to local hydrological conditions.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors thank the Araucária Foundation for the scholarships granted to the first author (Scientific Program PIBIC from 2018 to 2019). The soil analyses were supported by the Soil Analysis Laboratory of the Federal University of Technology of Paraná–Pato Branco. Paulo Tarso S. de Oliveira and Murilo Cesar Lucas were supported by the Brazilian National Council for Scientific and Technological Development (CNPq), respectively, Grant Nos. 441289/2017-7 and 429750/2018-8.

References

ABNT (Associação Brasileira de Normas Técnicas). 2016. Amostras de solo—Preparação para ensaios de compactação e ensaios de caracterização. ABNT NBR 6457. Rio de Janeiro, BR: ABNT.
Ajmal, M., and T.-W. Kim. 2015. “Quantifying excess stormwater using SCS-CN-based rainfall runoff models and different curve number determination methods.” J. Irrig. Drain. Eng. 141 (3): 04014058. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000805.
Ajmal, M., M. Waseem, J.-H. Ahn, and T.-W. Kim. 2015. “Improved runoff estimation using event-based rainfall-runoff models.” Water Resour. Manage. 29 (6): 1995–2010. https://doi.org/10.1007/s11269-015-0924-z.
Ajmal, M., M. Waseem, H. S. Kim, and T.-W. Kim. 2016. “Potential implications of pre-storm soil moisture on hydrological prediction.” J. Hydro-environ. Res. 11 (Jun): 1–15. https://doi.org/10.1016/j.jher.2015.11.004.
Almeida, W. S., E. Panachuki, P. T. S. Oliveira, R. S. Menezes, T. A. Sobrinho, and D. F. Carvalho. 2018. “Effect of soil tillage and vegetal cover on soil water infiltration.” Soil Tillage Res. 175 (Jan): 130–138. https://doi.org/10.1016/j.still.2017.07.009.
Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. M. Gonçalves, and G. Sparovek. 2013. “Köppen’s climate classification map for Brazil.” Meteorol. Z. 22 (6): 711–728. https://doi.org/10.1127/0941-2948/2013/0507.
ASTM. 2003. Standard test method for infiltration rate of soils in field using double-ring infiltrometer. ASTM D 3385. West Conshohocken, PA: ASTM.
Balena, R., E. Bortolini, and J. C. Tomazoni. 2009. “Caracterização dos tipos de solos do município de Pato Branco através técnicas de geoprocessamento.” Synergismus Scyentifica UTFPR 4 (1): 1–3.
Banasik, K., A. Krajewski, A. Sikorska, and L. Hejduk. 2014. “Curve number estimation for a small urban catchment from recorded rainfall-runoff events.” Arch. Environ. Prot. 40 (3): 75–86. https://doi.org/10.2478/aep-2014-0032.
Cea, L., and I. Fraga. 2018. “Incorporating antecedent moisture conditions and intraevent variability of rainfall on flood frequency analysis in poorly gauged basins.” Water Resour. Res. 54 (11): 8774–8791. https://doi.org/10.1029/2018WR023194.
Chin, D. A. 2013. Water-resources engineering. Upper Saddle River, NJ: Pearson Education.
Chin, D. A. 2017. “Estimating the parameters of the curve number model.” J. Hydrol. Eng. 22 (6): 06017001. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001495.
Chin, D. A. 2018. “On relationship between curve numbers and phi indices.” Water Sci. Eng. 11 (3): 187–195. https://doi.org/10.1016/j.wse.2018.09.006.
Christianson, R. D., S. L. Hutchinson, and G. O. Brown. 2016. “Curve number estimation accuracy on disturbed and undisturbed soils.” J. Hydrol. Eng. 21 (2): 04015059. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001274.
D’Asaro, F., G. Grillone, and R. H. Hawkins. 2014. “Curve number: Empirical evaluation and comparison with curve number handbook tables in Sicily.” J. Hydrol. Eng. 19 (12): 04014035. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000997.
Durán-Barroso, P., J. González, and J. B. Valdés. 2017. “Sources of uncertainty in the NRCS CN model: Recognition and solutions.” Hydrol. Processes 31 (22): 3898–3906. https://doi.org/10.1002/hyp.11305.
Elhakeem, M., and A. N. Papanicolaou. 2009. “Estimation of the runoff curve number via direct rainfall simulator measurements in the state of Iowa, USA.” Water Resour. Manage. 23 (12): 2455–2473. https://doi.org/10.1007/s11269-008-9390-1.
Grimaldi, S., A. Petroselli, and N. Romano. 2012. “Green-ampt curve-number mixed procedure as an empirical tool for rainfall-runoff modelling in small and ungauged basins.” Hydrol. Processes 27 (8): 1253–1264. https://doi.org/10.1002/hyp.9303.
Hawkins, R. H. 1993. “Asymptotic determination of runoff curve numbers from data.” J. Irrig. Drain. Eng. 119 (2): 334–345. https://doi.org/10.1061/(ASCE)0733-9437(1993)119:2(334).
Hawkins, R. H., T. J. Ward, D. E. Woodward, and J. A. Van Mullem. 2009. Curve number hydrology: State of practice. Reston, VA: ASCE.
Horton, R. E. 1933. “The role of infiltration in the hydrologic cycle.” Trans. Am. Geophys. Union 14 (1): 446–460. https://doi.org/10.1029/TR014i001p00446.
Horton, R. E. 1939. “Analysis for runoff-plat experiments with varying infiltration-capacity.” Trans. Am. Geophys. Union 20 (4): 693–711. https://doi.org/10.1029/TR020i004p00693.
Horton, R. E. 1945. “Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology.” Geol. Soc. Am. Bull. 56 (3): 275–370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.
Hu, P., J. Tang, J. Fan, S. Shu, Z. Hu, and B. Zhu. 2020. “Incorporating a rainfall intensity modification factor γ into the Ia-S relationship in the NRCS-CN method.” Int. Soil Water Conserv. Res. 8 (3): 237–244. https://doi.org/10.1016/j.iswcr.2020.07.004.
IBGE (Instituto Brasileiro de Geografia e Estatística). 2019. “Censo demográfico 2019.” Accessed December 3, 2019. https://cidades.ibge.gov.br/brasil/pr/pato-branco/panorama.
Jain, M. K., S. K. Mishra, P. S. Babu, K. Venugopal, and V. P. Singh. 2006. “Enhanced runoff curve number model incorporating storm duration and a nonlinear Ia-S relation.” J. Hydrol. Eng. 11 (6): 631–635. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(631).
King, K. W., J. G. Arnold, and R. L. Bingner. 1999. “Comparison of green-ampt and curve number methods on Goodwin creek watershed using SWAT.” Trans. ASAE 42 (4): 919–926. https://doi.org/10.13031/2013.13272.
Kruskal, W. H., and W. A. Wallis. 1952. “Use of ranks in one-criterion variance analysis.” J. Am. Stat. Assoc. 47 (260): 583–621. https://doi.org/10.1080/01621459.1952.10483441.
Krvavica, N., and J. Rubinić. 2020. “Evaluation of design storms and critical rainfall durations for flood prediction in partially urbanized catchments.” Water 12 (7): 2044. https://doi.org/10.3390/w12072044.
Lal, M., S. K. Mishra, and A. Pandey. 2015. “Physical verification of the effect of land features and antecedent moisture on runoff curve number.” Catena 133 (Oct): 318–327. https://doi.org/10.1016/j.catena.2015.06.001.
Lal, M., S. K. Mishra, A. Pandey, R. P. Pandey, P. K. Meena, A. Chaudhary, R. K. Jha, A. K. Shreevastava, and Y. Kumar. 2016. “Evaluation of the soil conservation service curve number methodology using data from agricultural plots.” Hydrogeol. J. 25 (1): 151–167. https://doi.org/10.1007/s10040-016-1460-5.
Marquardt, D. 1963. “An algorithm for least-squares estimation of nonlinear parameters.” J. Soc. Ind. Appl. Math. 11 (2): 431–441. https://doi.org/10.1137/0111030.
McCuen, R. H. 1998. Hydrologic analysis and design. Upper Saddle River, NJ: Prentice Hall.
Mishra, S. K., M. K. Jain, and V. P. Singh. 2004. “Evaluation of the SCS-CN-based model incorporating antecedent moisture.” Water Resour. Manage. 18 (6): 567–589. https://doi.org/10.1007/s11269-004-8765-1.
Mishra, S. K., R. P. Pandey, and M. K. Jain. 2008. “A rain duration and modified AMC-dependent SCS-CN procedure for long duration rainfall-runoff events.” Water Resour. Manage. 22 (7): 861–876. https://doi.org/10.1007/s11269-007-9196-6.
Mishra, S. K., V. P. Singh, and P. K. Singh. 2018. “Revisiting the Soil Conservation Service curve number method.” In Hydrologic modeling, 667–693. Singapore: Springer.
Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith. 2007. “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.” Trans. ASABE 50 (3): 885–900. https://doi.org/10.13031/2013.23153.
Nash, J. E., and J. V. Sutcliffe. 1970. “River flow forecasting through conceptual models. Part I: A discussion of principles.” J. Hydrol. 10 (3): 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
Oliveira, P. T. S., M. A. Nearing, R. H. Hawkins, J. J. Stone, D. B. B. Rodrigues, E. Panachuki, and E. Wendland. 2016. “Curve number estimation from Brazilian Cerrado rainfall and runoff data.” J. Soil Water Conserv. 71 (5): 420–429. https://doi.org/10.2489/jswc.71.5.420.
Ponce, V. M., and R. H. Hawkins. 1996. “Runoff curve number: Has it reached maturity?” J. Hydrol. Eng. 1 (1): 11–19. https://doi.org/10.1061/(ASCE)1084-0699(1996)1:1(11).
Reis, D. L. 2017. Avaliação do desempenho de equações IDF a partir de dados de precipitação de sensoriamento remoto (TMPA-V7). Pato Branco, Brazil: Dept. of Civil Engineering, Federal Univ. of Technology–Paraná.
Rezaei-Sadr, H. 2016. “Influence of coarse soils with high hydraulic conductivity on the applicability of the SCS-CN method.” Hydrol. Sci. J. 62 (5): 843–848. https://doi.org/10.1080/02626667.2016.1262037.
Sahu, R. K., S. K. Mishra, and T. I. Eldho. 2012. “Improved storm duration and antecedent moisture condition coupled SCS-CN concept-based model.” J. Hydrol. Eng. 17 (11): 1173–1179. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000443.
Shi, Z.-H., L.-D. Chen, N.-F. Fang, D.-F. Qin, and C.-F. Cai. 2009. “Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges area, China.” Catena 77 (1): 1–7. https://doi.org/10.1016/j.catena.2008.11.006.
Singh, P. K., S. K. Mishra, R. Berndtsson, M. K. Jain, and R. P. Pandey. 2015. “Development of a modified SMA based MSCS-CN model for runoff estimation.” Water Resour. Manage. 29 (11): 4111–4127. https://doi.org/10.1007/s11269-015-1048-1.
Singh, V. 1992. Elementary hydrology. Upper Saddle River, NJ: Prentice Hall.
Soulis, K. X., J. D. Valiantzas, N. Dercas, and P. A. Londra. 2009. “Investigation of the direct runoff generation mechanism for the analysis of the SCS-CN method applicability to a partial area experimental watershed.” Hydrol. Earth Syst. Sci. 13 (5): 605–615. https://doi.org/10.5194/hess-13-605-2009.
Tedela, N. H., S. C. McCutcheon, T. C. Rasmussen, R. H. Hawkins, W. T. Swank, J. L. Campbell, M. B. Adams, C. R. Jackson, and E. W. Tollner. 2012. “Runoff curve numbers for 10 small forested watersheds in the mountains of the eastern United States.” J. Hydrol. Eng. 17 (11): 1188–1198. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000436.
USDA. 1986. Urban hydrology for small watersheds TR-55. Washington, DC: USDA–Natural Resources Conservation Service.
USDA. 2004. “Estimation of direct runoff from storm rainfall.” Chap. 10 in Part 630 hydrology-national engineering handbook. Washington, DC: USDA–Natural Resources Conservation Service.
USDA. 2007. “Hydrologic soil groups.” Chap. 7 in Part 630 hydrology-national engineering handbook. Washington, DC: USDA–Natural Resources Conservation Service.
USDA. 2017. “Estimation of direct runoff from storm rainfall (draft).” Chap. 10 in Part 630 hydrology-national engineering handbook. Washington, DC: USDA–Natural Resources Conservation Service.
Valle Junior, L. C. G., D. B. B. Rodrigues, and P. T. S. Oliveira. 2019. “Initial abstraction ratio and curve number estimation using rainfall and runoff data from a tropical watershed.” Braz. J. Water Resour. 24 (5): 1–9. https://doi.org/10.1590/2318-0331.241920170199.
Verma, S., R. K. Verma, S. K. Mishra, A. Singh, and G. K. Jayaraj. 2017. “A revisit of NRCS-CN inspired models coupled with RS and GIS for runoff estimation.” Hydrol. Sci. J. 62 (12): 1891–1930. https://doi.org/10.1080/02626667.2017.1334166.
Wang, X., and H. Bi. 2020. “The effects of rainfall intensities and duration on SCS-CN model parameters under simulated rainfall.” Water 12 (6): 1595. https://doi.org/10.3390/w12061595.
Woodward, D. E., R. H. Hawkins, R. Jiang, A. T. Hjelmfelt Junior, J. A. Van Mullem, and D. Q. Quan. 2003. “Runoff curve number method: Examination of the initial abstraction ratio.” In Proc., World Water and Environmental Resources Congress, 1–10. Reston, VA: ASCE.
Yuan, Y., W. Nie, S. C. McCutcheon, and E. V. Taguas. 2014. “Initial abstraction and curve numbers for semiarid watersheds in southeastern Arizona.” Hydrol. Processes 28 (3): 774–783. https://doi.org/10.1002/hyp.9592.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 147Issue 10October 2021

History

Received: Aug 25, 2020
Accepted: May 30, 2021
Published online: Aug 2, 2021
Published in print: Oct 1, 2021
Discussion open until: Jan 2, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Luis Eduardo Bertotto [email protected]
Master Student, São Carlos School of Engineering, Univ. of São Paulo, P.O. Box 359, São Carlos, São Paulo State 13566-590, Brazil. Email: [email protected]
Professor, Dept. of Civil Engineering, Federal Univ. of Technology–Paraná, P.O. Box 571, Pato Branco, Paraná State 85502–970, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-1732-0241. Email: [email protected]
Cesar Augusto Medeiros Destro, Ph.D. [email protected]
Professor, Dept. of Civil Engineering, Federal Univ. of Technology–Paraná, P.O. Box 571, Pato Branco, Paraná State 85502–970, Brazil. Email: [email protected]
David Arthur Chin, Ph.D., F.ASCE [email protected]
P.E.
Professor, Dept. of Civil, Architectural and Environmental Engineering, Univ. of Miami, Coral Gables, FL 33146. Email: [email protected]
Wenes dos Santos Alves [email protected]
BS Student, Dept. of Civil Engineering, Federal Univ. of Technology–Paraná, P.O. Box 571, Pato Branco, Paraná State 85502–970, Brazil. Email: [email protected]
Paulo Tarso S. de Oliveira, Ph.D. [email protected]
Professor, Federal Univ. of Mato Grosso do Sul, P.O. Box 549, Campo Grande, Mato Grosso do Sul State 79070–900, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • The Curve Number Method in the 21st Century, Journal of Irrigation and Drainage Engineering, 10.1061/JIDEDH.IRENG-10108, 149, 6, (2023).
  • Curve number for runoff estimating in interlocking concrete pavement, RBRH, 10.1590/2318-0331.272220220035, 27, (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share