Technical Papers
Oct 9, 2019

Daily Reference Evapotranspiration Based on Temperature for Brazilian Meteorological Stations

Publication: Journal of Irrigation and Drainage Engineering
Volume 145, Issue 12

Abstract

Reference evapotranspiration data (ET0) are essential for certain classes of agrarian and environmental science studies. The standard model for calculating ET0 is the FAO Penman–Monteith (FPM), but its application may be difficult when meteorological data are scarce. The objective of this study was to evaluate alternative models to estimate ET0 when only air temperature data are available by using daily data from 22 meteorological stations in Brazil under different climate classifications. The data set was divided for model calibration and validation. In addition to the Hargreaves–Samani (HS) model in its original and locally calibrated (HSc) forms, one model based on the HS model (HSb), and two other models (PE and FPMead) were proposed. The values of performance statistics for the calibrated models were similar. In general, the FPMead model (mean absolute error between 0.39 and 0.79  mmday1) was the best according to a Friedman test at a 5% significance level, followed by the PE, HSb, and HSc models. The best performances for the calibrated models were obtained for the stations in the humid tropical zone (Köppen climate classifications Cfa, Cfb, and Cwa) according to the statistical dimensionless measures.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

We thank the Brazilian National Institute of Meteorology (INMET) for making the meteorological data series available. We also thank Raimundo Jaildo dos Anjos (Coordinator, INMET/3° DISME) for information about some of the available data.

References

Abbaspour, K. 2015. “SWAT-CUP: SWAT calibration and uncertainty programs: A user manual.” Eawag: Swiss Federal Institute of Aquatic Science and Technology. Accessed August 10, 2019. https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf.
Adeloye, A. J., R. Rustum, and I. D. Kariyama. 2012. “Neural computing modeling of the reference crop evapotranspiration.” Environ. Modell. Software 29 (1): 61–73. https://doi.org/10.1016/j.envsoft.2011.10.012.
Allen, R. G. 1997. “Self-calibrating method for estimating solar radiation from air temperature.” J. Hydrol. Eng. 2 (2): 56–67. https://doi.org/10.1061/(ASCE)1084-0699(1997)2:2(56).
Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. Rome: Food and Agriculture Organization of the United Nations.
Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. De Moraes Gonçalves, and G. Sparovek. 2013. “Köppen’s climate classification map for Brazil.” Meteorol. Z. 22 (6): 711–728. https://doi.org/10.1127/0941-2948/2013/0507.
ANA (Agência Nacional de Águas). 2018. Brazilian water resources report 2017: Full report. Brasília, Brazil: ANA.
Anderson, R. G., J. F. S. Ferreira, D. L. Jenkins, N. da Silva Dias, and D. L. Suarez. 2017. “Incorporating field wind data to improve crop evapotranspiration parameterization in heterogeneous regions.” Irrig. Sci. 35 (6): 533–547. https://doi.org/10.1007/s00271-017-0560-x.
Antonopoulos, V. Z., and A. V. Antonopoulos. 2017. “Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables.” Comput. Electron. Agric. 132 (Jan): 86–96. https://doi.org/10.1016/j.compag.2016.11.011.
Araya, A., I. Kisekka, P. H. Gowda, and P. V. V. Prasad. 2017. “Evaluation of water-limited cropping systems in a semi-arid climate using DSSAT-CSM.” Agric. Syst. 150 (Jan): 86–98. https://doi.org/10.1016/j.agsy.2016.10.007.
Arnold, J. G., J. R. Kiniry, R. Srinivasan, J. R. Williams, E. B. Haney, and S. L. Neitsch. 2013. Soil and water assessment tool: Input/output documentation: Version 2012. College Station, TX: Texas Water Resources Institute.
Berti, A., G. Tardivo, A. Chiaudani, F. Rech, and M. Borin. 2014. “Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy.” Agric. Water Manage. 140 (Jul): 20–25. https://doi.org/10.1016/j.agwat.2014.03.015.
Bogawski, P., and E. Bednorz. 2014. “Comparison and validation of selected evapotranspiration models for conditions in Poland (Central Europe).” Water Resour. Manage. 28 (14): 5021–5038. https://doi.org/10.1007/s11269-014-0787-8.
Borges Júnior, J. C. F., R. J. Anjos, T. J. A. Silva, J. R. S. Lima, and C. L. T. Andrade. 2012. “Métodos de estimativa da evapotranspiração de referência diária para a microrregião de Garanhuns, PE.” Rev. Bras. Engenharia Agrícola Ambiental 16 (4): 380–390. https://doi.org/10.1590/S1415-43662012000400008.
Borges Júnior, J. C. F., P. A. Ferreira, C. L. T. Andrade, and B. Hedden-Dunkhorst. 2008a. “Computational modeling for irrigated agriculture planning. Part I: General description and linear programming.” Engenharia Agrícola 28 (3): 471–482. https://doi.org/10.1590/S0100-69162008000300008.
Borges Júnior, J. C. F., P. A. Ferreira, C. L. T. Andrade, and B. Hedden-Dunkhorst. 2008b. “Computational modeling for irrigated agriculture planning. Part II: Risk analysis.” Engenharia Agrícola 28 (3): 483–493. https://doi.org/10.1590/S0100-69162008000300009.
Borges Júnior, J. C. F., A. L. M. Oliveira, C. L. T. de Andrade, and M. A. B. Pinheiro. 2017. “Equação de Hargreaves-Samani calibrada em diferentes bases temporais para Sete Lagoas, MG.” Rev. Engenharia Agric. 25 (1): 38–49. https://doi.org/10.13083/reveng.v25i1.742.
Córdova, M., G. Carrillo-Rojas, P. Crespo, B. Wilcox, and R. Célleri. 2015. “Evaluation of the Penman-Monteith (FAO 56 PM) method for calculating reference evapotranspiration using limited data.” Mt. Res. Dev. 35 (3): 230–239. https://doi.org/10.1659/MRD-JOURNAL-D-14-0024.1.
da Silva Júnior, R. O., E. B. de Souza, A. L. Tavares, J. A. Mota, D. B. S. Ferreira, P. W. M. Souza-Filho, and E. J. P. da Rocha. 2017. “Three decades of reference evapotranspiration estimates for a tropical watershed in the eastern Amazon.” Anais Academia Bras. Cienc. 89 (3): 1985–2002. https://doi.org/10.1590/0001-3765201720170147.
Djaman, K., H. Tabari, A. B. Balde, L. Diop, K. Futakuchi, and S. Irmak. 2016. “Analyses, calibration and validation of evapotranspiration models to predict grass-reference evapotranspiration in the Senegal river delta.” J. Hydrol. Reg. Stud. 8 (Dec): 82–94. https://doi.org/10.1016/j.ejrh.2016.06.003.
Droogers, P., and R. G. Allen. 2002. “Estimating reference evapotranspiration under inaccurate data conditions.” Irrig. Drain. Syst. 16 (1): 33–45. https://doi.org/10.1023/A:1015508322413.
Feng, Y., Y. Jia, N. Cui, L. Zhao, C. Li, and D. Gong. 2017. “Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China.” Agric. Water Manage. 181 (Feb): 1–9. https://doi.org/10.1016/j.agwat.2016.11.010.
Ferreira, L. B., F. F. D. Cunha, A. B. Duarte, G. C. Sediyama, and P. R. Cecon. 2018. “Calibration methods for the Hargreaves-Samani equation.” Ciênc. Agrotecnol. 42 (1): 104–114. https://doi.org/10.1590/1413-70542018421017517.
Guo, D., S. Westra, and H. R. Maier. 2016. “An R package for modelling actual, potential and reference evapotranspiration.” Environ. Modell. Software 78 (Apr): 216–224. https://doi.org/10.1016/j.envsoft.2015.12.019.
Hargreaves, G. H., and R. G. Allen. 2003. “History and evaluation of Hargreaves evapotranspiration equation.” J. Irrig. Drain. Eng. 129 (1): 53–63. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53).
Hargreaves, G. H., and Z. A. Samani. 1985. “Reference crop evapotranspiration from ambient air temperature.” Am. Soc. Agric. Eng. 1 (2): 96–99. https://doi.org/10.13031/2013.26773.
Jensen, M. E., R. D. Burman, and R. G. Allen. 1990. Evapotranspiration and irrigation water requirements. Reston, VA: ASCE.
Jerszurki, D., J. L. M. Souza, and L. C. R. Silva. 2017. “Expanding the geography of evapotranspiration: An improved method to quantify land-to-air water fluxes in tropical and subtropical regions.” PLoS One 12 (6): e0180055. https://doi.org/10.1371/journal.pone.0180055.
Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie. 2003. “DSSAT cropping system model.” Eur. J. Agron. 18 (3–4): 235–265. https://doi.org/10.1016/S1161-0301(02)00107-7.
Khoshravesh, M., M. A. G. Sefidkouhi, and M. Valipour. 2017. “Estimation of reference evapotranspiration using multivariate fractional polynomial, Bayesian regression, and robust regression models in three arid environments.” Appl. Water Sci. 7 (4): 1911–1922. https://doi.org/10.1007/s13201-015-0368-x.
Kisi, O. 2014. “Comparison of different empirical methods for estimating daily reference evapotranspiration in Mediterranean climate.” J. Irrig. Drain. Eng. 140 (1): 04013002. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000664.
Ladlani, I., L. Houichi, L. Djemili, S. Heddam, and K. Belouz. 2012. “Modeling daily reference evapotranspiration (ET0) in the north of Algeria using generalized regression neural networks (GRNN) and radial basis function neural networks (RBFNN): A comparative study.” Meteorol. Atmos. Phys. 118 (3–4): 163–178. https://doi.org/10.1007/s00703-012-0205-9.
Landeras, G., E. Bekoe, J. Ampofo, F. Logah, M. Diop, M. Cisse, and J. Shiri. 2017. “New alternatives for reference evapotranspiration estimation in West Africa using limited weather data and ancillary data supply strategies.” Theor. Appl. Climatol. 132 (3–4): 1–16. https://doi.org/10.1007/s00704-017-2120-y.
Lasdon, L. S., A. D. Waren, A. Jain, and M. Ratner. 1978. “Design and testing of a generalized reduced gradient code for nonlinear programming.” ACM Trans. Math. Software 4 (1): 34–50. https://doi.org/10.1145/355769.355773.
Liu, X., C. Xu, X. Zhong, Y. Li, X. Yuan, and J. Cao. 2017. “Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement.” Agric. Water Manage. 184 (Apr): 145–155. https://doi.org/10.1016/j.agwat.2017.01.017.
Mallikarjuna, P., S. A. Jyothy, D. S. Murthy, and K. C. Reddy. 2014. “Performance of recalibrated equations for the estimation of daily reference evapotranspiration.” Water Resour. Manage. 28 (13): 4513–4535. https://doi.org/10.1007/s11269-014-0733-9.
Marsaglia, G., W. W. Tsang, and J. Wang. 2003. “Evaluating Kolmogorov’s distribution.” J. Stat. Software 8 (18): 1–4. https://doi.org/10.18637/jss.v008.i18.
Martinez, C. J., and M. Thepadia. 2010. “Estimating reference evapotranspiration with minimum data in Florida.” J. Irrig. Drain. Eng. 136 (7): 494–501. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000214.
Mendiburu, F. D. 2019. “Package ‘agricolae’: Statistical procedures for agricultural research.” Comprehensive R Archive Network. Accessed August 10, 2019. https://cran.r-project.org/web/packages/agricolae/agricolae.pdf.
Palisade Corporation. 2016. Guide to using @RISK: Risk analysis and simulation add-in for Microsoft Excel. New York: Palisade Corporation.
Paredes, P., J. C. Fontes, E. B. Azevedo, and L. S. Pereira. 2017. “Daily reference crop evapotranspiration in the humid environments of Azores islands using reduced data sets: Accuracy of FAO-PM temperature and Hargreaves-Samani methods.” Theor. Appl. Climatol. 134 (1–2): 1–17. https://doi.org/10.1007/s00704-017-2295-2.
Patel, J., H. Patel, and C. Bhatt. 2015. “Modified Hargreaves equation for accurate estimation of evapotranspiration of diverse climate locations in India.” Proc. Natl. Acad. Sci. India Sect. B-Biol. Sci. 85 (1): 161–166. https://doi.org/10.1007/s40011-014-0314-y.
Pereira, L. S., R. G. Allen, M. Smith, and D. Raes. 2015. “Crop evapotranspiration estimation with FAO56: Past and future.” Agric. Water Manage. 147 (Jan): 4–20. https://doi.org/10.1016/j.agwat.2014.07.031.
Petković, D., M. Gocic, S. Trajkovic, S. Shamshirband, S. Motamedi, R. Hashim, and H. Bonakdari. 2015. “Determination of the most influential weather parameters on reference evapotranspiration by adaptive neuro-fuzzy methodology.” Comput. Electron. Agric. 114 (Jun): 277–284. https://doi.org/10.1016/j.compag.2015.04.012.
Pontes, P. R. M., F. M. Fan, A. S. Fleischmann, R. C. D. de Paiva, D. C. Buarque, V. A. Siqueira, P. F. Jardim, M. V. Sorribas, and W. Collischonn. 2017. “MGB-IPH model for hydrological and hydraulic simulation of large floodplain river systems coupled with open source GIS.” Environ. Modell. Software 94 (Aug): 1–20. https://doi.org/10.1016/j.envsoft.2017.03.029.
Ravazzani, G., C. Corbari, S. Morella, P. Gianoli, and M. Mancini. 2012. “Modified Hargreaves-Samani equation for the assessment of reference evapotranspiration in Alpine river basins.” J. Irrig. Drain. Eng. 138 (7): 592–599. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000453.
Raziei, T., and L. S. Pereira. 2013. “Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran.” Agric. Water Manage. 121 (Mar): 1–18. https://doi.org/10.1016/j.agwat.2012.12.019.
Rojas, J. P., and R. E. Sheffield. 2013. “Evaluation of daily reference evapotranspiration methods as compared with the ASCE-EWRI Penman-Monteith equation using limited weather data in northeast Louisiana.” J. Irrig. Drain. Eng. 139 (4): 285–292. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000523.
Samani, Z. 2000. “Estimating solar radiation and evapotranspiration using minimum climatological data.” J. Irrig. Drain. Eng. 126 (4): 265–267. https://doi.org/10.1061/(ASCE)0733-9437(2000)126:4(265).
Shiri, J., A. A. Sadraddini, A. H. Nazemi, P. Marti, A. Fakheri Fard, O. Kisi, and G. Landeras. 2015. “Independent testing for assessing the calibration of the Hargreaves-Samani equation: New heuristic alternatives for Iran.” Comput. Electron. Agric. 117 (Sep): 70–80. https://doi.org/10.1016/j.compag.2015.07.010.
Steidle Neto, A. J., J. C. Borges Júnior, C. L. Andrade, D. C. Lopes, and P. T. Nascimento. 2015. “Reference evapotranspiration estimates based on minimum meteorological variable requirements of historical weather data.” Chil. J. Agric. Res. 75 (3): 366–374. https://doi.org/10.4067/S0718-58392015000400014.
Tegegne, G., D. K. Park, and Y. O. Kim. 2017. “Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin.” J. Hydrol. Reg. Stud. 14 (Dec): 49–66. https://doi.org/10.1016/j.ejrh.2017.10.002.
Temesgen, B., S. Eching, B. Davidoff, and K. Frame. 2005. “Comparison of some reference evapotranspiration equations for California.” J. Irrig. Drain. Eng. 131 (1): 73–84. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(73).
Tomas-Burguera, M., S. M. Vicente-Serrano, M. Grimalt, and S. Beguería. 2017. “Accuracy of reference evapotranspiration (ETo) estimates under data scarcity scenarios in the Iberian Peninsula.” Agric. Water Manage. 182 (Mar): 103–116. https://doi.org/10.1016/j.agwat.2016.12.013.
Trajkovic, S., and S. Kolakovic. 2009. “Estimating reference evapotranspiration using limited weather data.” J. Irrig. Drain. Eng. 135 (4): 443–449. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000094.
Valiantzas, J. D. 2013. “Simplified reference evapotranspiration formula using an empirical impact factor for Penman’s aerodynamic term.” J. Hydrol. Eng. 18 (1): 108–114. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000590.
Vanuytrecht, E., D. Raes, P. Steduto, T. C. Hsiao, E. Fereres, L. K. Heng, M. Garcia Vila, and P. Mejias Moreno. 2014. “AquaCrop: FAO’s crop water productivity and yield response model.” Environ. Modell. Software 62 (Dec): 351–360. https://doi.org/10.1016/j.envsoft.2014.08.005.
Willmott, C. J., S. M. Robeson, and K. Matsuura. 2012. “Refined index of model performance.” Int. J. Climatol. 32 (13): 2088–2094. https://doi.org/10.1002/joc.2419.
Willmott, C. J., S. M. Robeson, K. Matsuura, and D. L. Ficklin. 2015. “Assessment of three dimensionless measures of model performance.” Environ. Modell. Software 73 (Nov): 167–174. https://doi.org/10.1016/j.envsoft.2015.08.012.
Xystrakis, F., and A. Matzarakis. 2011. “Evaluation of 13 empirical reference potential evapotranspiration equations on the Island of Crete in Southern Greece.” J. Irrig. Drain. Eng. 137 (4): 211–222. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000283.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 145Issue 12December 2019

History

Received: Nov 7, 2018
Accepted: Aug 13, 2019
Published online: Oct 9, 2019
Published in print: Dec 1, 2019
Discussion open until: Mar 9, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Dept. of Agricultural Sciences, Federal Univ. of São João del-Rei, P.O. Box 56, Sete Lagoas, MG CEP 35701-970, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-8178-8167. Email: [email protected]
Ph.D. Student and Postgraduate Program in Agricultural Engineering, Federal Univ. of Lavras, P.O. Box 3037, Lavras, MG CEP 37200-000, Brazil. ORCID: https://orcid.org/0000-0001-9563-3625. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share