Case Studies
Aug 22, 2019

Numerical Model for a Nineteenth-Century Hydrometric Module

Publication: Journal of Irrigation and Drainage Engineering
Volume 145, Issue 11

Abstract

The Cequia of Manresa is a 26-km open channel constructed in the fourteenth century that conveys water from the Llobregat River to the city of Manresa using an elevation difference of 10.4 m. The channel is still operational today, supplying water for domestic, industrial, and agricultural uses to an overall population of 150,000 people. A hydrometric module was constructed in 1864 to regulate the flow rate in the Cequia to under 1,000  L/s. This module was dismantled in 1959 and is currently nonoperational. This work studied the operation of the module and determined whether it met the objectives for which it was built. The module was modeled numerically. Owing to the lack of experimental measures from the module, the model was validated with an analytical model from the literature, which demonstrated its accuracy. The model was created by applying computational fluid dynamics (CFD) using FLOW-3D software. The results showed that the numerical model reproduced the dynamic behavior of the hydrometric module (transitory), and that the old automated system operated correctly, limiting the flow to the required value. The numerical models can be used as a tool for historical research.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was partially supported by the Spanish government (Project Nos. DPI2013-40882-P and DPI2016-80077-R). Conflict of Interest-None.

References

Ali, Z., P. G. Tucker, and S. Shahpar. 2017. “Optimal mesh topology generation for CFD.” Comput. Methods Appl. Mech. Eng. 317 (Apr): 431–457. https://doi.org/10.1016/j.cma.2016.12.001.
Andersson, A. G., P. Andreasson, and T. Staffan Lundström. 2013. “CFD-modelling and validation of free surface flow during spilling of reservoir in down-scale model.” Eng. Appl. Comput. Fluid Mech. 7 (1): 159–167. https://doi.org/10.1080/19942060.2013.11015461.
Arvanaghi, H., and N. N. Oskuei. 2013. “Sharp-crested weir discharge coefficient.” J. Civ. Eng. Urbanism 3 (3): 87–91.
Aydin, I., A. B. Altan-Sakarya, and C. Sisman. 2011. “Discharge formula for rectangular sharp-crested weirs.” Flow Meas. Instrum. 22 (2): 144–151. https://doi.org/10.1016/j.flowmeasinst.2011.01.003.
Aydin, M. C. 2016. “Investigation of a sill effect on rectangular side-weir flow by using CFD.” J. Irrig. Drain. Eng. 142 (2): 04015043. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000957.
Babaali, H., A. Shamsai, and H. Vosoughifar. 2015. “Computational modeling of the hydraulic jump in the stilling basin with convergence walls using CFD codes.” Arabian J. Sci. Eng. 40 (2): 381–395. https://doi.org/10.1007/s13369-014-1466-z.
Bhajantri, M. R., T. I. Eldho, and P. B. Deolalikar. 2006. “Hydrodynamic modelling of flow over a spillway using a two-dimensional finite volume-based numerical model.” Sadhana 31 (6): 743–754. https://doi.org/10.1007/BF02716893.
Blasone, M., F. Dell’Anno, R. De Luca, O. Faella, O. Fiore, and A. Saggese. 2015. “Discharge time of a cylindrical leaking bucket.” Eur. J. Phys. 36 (3): 035017. https://doi.org/10.1088/0143-0807/36/3/035017.
Franchini, M., and L. Lanza. 2013. “Leakages in pipes: Generalizing Torricelli’s equation to deal with different elastic materials, diameters and orifice shape and dimensions.” Urban Water J. 11 (8): 678–695. https://doi.org/10.1080/1573062X.2013.868496.
Hargreaves, D. M., H. P. Morvan, and N. G. Wright. 2007. “Validation of the volume of fluid method for free surface calculation: The broad-crested weir.” Eng. Appl. Comput. Fluid Mech. 1 (2): 136–146. https://doi.org/10.1080/19942060.2007.11015188.
Kirchner, H., J. Oliver, and S. Vela. 2002. Aigua prohibida: Arqueologia hidràulica del feudalisme a la Cerdanya: El Canal Reial de Puigcerdà. Bellaterra, Spain: Universitat Autònoma de Barcelona.
Latorre, X. 1995. Història de l’aigua a Catalunya. L’abecedari S.L. Barcelona: Barcelona, Spain.
Latorre, X. 2002. La Sèquia de Manresa. Girona, Spain: Fundació Pere García Fària.
Lin, C. H., J. F. Yen, and C. T. Tsai. 2002. “Influence of sluice gate contraction coefficient on distinguishing condition.” J. Irrig. Drain. Eng. 128 (4): 249–252. https://doi.org/10.1061/(ASCE)0733-9437(2002)128:4(249).
Namaee, M. R., M. Rostami, S. Jalaledini, and M. Habibi. 2014. “A 3D numerical simulation of flow over a broad-crested side weir.” In Advances in hydroinformatics, 511–523. Dordrecht, Netherlands: Springer.
Namaee, M. R., and R. Shadpoorian. 2016. “Numerical modeling of flow over two side weirs.” Arabian J. Sci. Eng. 41 (4): 1495–1510. https://doi.org/10.1007/s13369-015-1961-x.
Oliveras, J. 1986. La consolidació de la ciutat industrial: Manresa (1871-1900). Manresa, Spain: Caixa d’Estalvis de Manresa.
Pandeyp, R., P. K. Mittalp, and P. M. K. Choudharyp. 2016. “Flow characteristics of sharp crested rectangular weir: A review.” Int. J. Innovate Sci. Eng. Technol. 3 (3): 171–178.
Sarkardeh, H., A. Reza Zarrati, E. Jabbari, and M. Marosi. 2014. “Numerical simulation and analysis of flow in a reservoir in presence of vortex.” Eng. Appl. Comput. Fluid Mech. 8 (4): 598–608. https://doi.org/10.1080/19942060.2014.11083310.
Sarret, J. 1906. La Cequia de Manresa. Manresa, Spain: Caixa d’Estalvis de Manresa.
Taghavi, M., and H. Ghodousi. 2015. “Simulation of flow suspended load in weirs by using FLOW-3D model.” Civ. Eng. J. 1 (1): 37–49.
Turalina, D., D. Yembergenova, and K. Alibayeva. 2015. “The experimental study of the features of water flowing through a sharp-crested weir in channel.” In Vol. 92 of Proc., EPJ Web of Conf., 1–5. Les Ulis, France: EDP Sciences.
Verstappen, R., and A. Veldman. 2003. “Symmetry-preserving discretization of turbulent flow.” J. Comput. Phys. 187 (1): 343–368. https://doi.org/10.1016/S0021-9991(03)00126-8.
Versteeg, H. K. H. K., and W. W. Malalasekera. 2007. An introduction to computational fluid dynamics: The finite volume method. Harlow, UK: Pearson.
White, F. M. 1999. Fluid mechanics. Boston: McGraw-Hill.
Wu, S., and N. Rajaratnam. 2015. “Solutions to rectangular sluice gate flow problems.” J. Irrig. Drain. Eng. 141 (12): 06015003. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000922.
Zeng, J., L. Zhang, M. Ansar, E. Damisse, and J. A. González-Castro. 2017. “Applications of computational fluid dynamics to flow ratings at prototype spillways and weirs. I: Data generation and validation.” J. Irrig. Drain. Eng. 143 (1): 04016072. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001112.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 145Issue 11November 2019

History

Received: May 14, 2018
Accepted: May 1, 2019
Published online: Aug 22, 2019
Published in print: Nov 1, 2019
Discussion open until: Jan 22, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Jordi Vives-Costa [email protected]
Professor, Departament d’Enginyeria Minera, Industrial i TIC, Escola Politècnica Superior d’Enginyeria de Manresa, Universitat Politècnica de Catalunya, Av. Bases de Manresa 61–73, Manresa 08242, Spain (corresponding author). Email: [email protected]
Professor, Departament d’Enginyeria Minera, Industrial i TIC, Escola Politècnica Superior d’Enginyeria de Manresa, Universitat Politècnica de Catalunya, Av. Bases de Manresa 61–73, Manresa 08242, Spain. ORCID: https://orcid.org/0000-0002-7758-3967
Professor, Departament d’Enginyeria Mecànica, Escola Politècnica Superior d’Enginyeria de Manresa, Universitat Politècnica de Catalunya, Av. Bases de Manresa 61–73, Manresa 08242, Spain. ORCID: https://orcid.org/0000-0001-5986-5728

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share