Technical Papers
Jul 10, 2013

Solid-Set Sprinkler Irrigation Controllers Driven by Simulation Models: Opportunities and Bottlenecks

Publication: Journal of Irrigation and Drainage Engineering
Volume 140, Issue 1

Abstract

Farmers continue to show great differences in irrigation water use, even for a given location and crop. Irrigation advisory services have narrowed the gap between scientific knowledge and on-farm scheduling, but their success has been limited. The performance of sprinkler irrigation is greatly affected by factors such as wind speed, whose short-time variability requires tactical adjustments of the irrigation schedule. Mounting energy costs often require the consideration of interday and intraday tariff evolution. Opportunities have arisen that allow these challenges to be addressed through irrigation controllers guided by irrigation and crop simulation models. Remote control systems are often installed in collective pressurized irrigation networks. Agrometeorological information networks are available in regions worldwide. Water users’ associations use specialized databases for water management. Different configurations of irrigation controllers based on simulation models can develop, continuously update, and execute irrigation schedules aiming at maximizing irrigation adequacy and water productivity. Bottlenecks requiring action in the fields of research, development, and innovation are analyzed, with the goal of establishing agendas leading to the implementation and commercial deployment of advanced controllers for solid-set irrigation.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research was funded by the Government of Spain through research grant AGL2010-21681-C03-01. The research contract of S. Lecina was funded by the National Institute for Agricultural and Food Research and Technology (INIA), Spanish Ministry of Economy and Competitiveness.

References

Abadía, R., Rocamora, C., Ruiz, A., and Puerto, H. (2008). “Energy efficiency in irrigation distribution networks I: Theory.” Biosyst. Eng., 101(1), 21–27.
Arduino [Computer software] The Arduino Team, 〈http://arduino.cc/en/〉.
Bergez, J. E., Charron, M. H., Leenhardt, D., and Poupa, J. C. (2012). “MOUSTICS: A generic dynamic plot-based biodecisional model.” Comput. Electron. Agric., 82, 8–14.
Cárdenas-Lailhacar, B., and Dukes, M. D. (2012). “Soil moisture sensor landscape irrigation controllers: A review of multi-study results and future implication.” Trans. ASABE, 55(2), 581–590.
Carrión, P., Tarjuelo, J. M., and Montero, J. (2001). “SIRIAS: A simulation model for sprinkler irrigation: I. Description of the model.” Irrig. Sci., 20(2), 73–84.
Chalmers, D. J., Mitchell, P. D., and van Heek, L. (1981). “Control of peach tree growth and productivity by regulated water supply, tree density and summer pruning.” J. ASHS, 106(3), 307–312.
Clemmens, A. J. (1987). “Delivery system schedules and required capacities.” Planning, operation, rehabilitation and automation of irrigation systems, D. D. Zimbelman, ed., ASCE, Reston, VA.
CropWat [Computer software]. Food and Agricultural Organization of the United Nations, Rome.
Daccache, A., Lamaddalena, N., and Fratino, U. (2010). “On-demand pressurized water distribution systems impacts on sprinkler network design and performance.” Irrig. Sci., 28(4), 331–339.
Davis, S. L., Dukes, M. D., and Miller, G. L. (2009). “Landscape irrigation by evapotranspiration-based irrigation controllers under dry conditions in Southwest Florida.” Agric. Water Manage., 96(12), 1828–1836.
Dechmi, F., Playán, E., Cavero, J., Martínez-Cob, A., and Faci, J. M. (2004a). “A coupled crop and solid-set sprinkler simulation model: I. Model development.” J. Irrig. Drain. Eng., 502–510.
Dechmi, F., Playán, E., Cavero, J., Martínez-Cob, A., and Faci, J. M. (2004b). “A coupled crop and solid-set sprinkler simulation model: II. Model application.” J. Irrig. Drain. Eng., 511–519.
Dechmi, F., Playán, E., Faci, J., and Cavero, J. (2010). “Simulation of sprinkler irrigation water uniformity impact on corn yield.” Spanish J. Agric. Res., 8(S2), S143–S151.
Dechmi, F., Playán, E., Faci, J., and Tejero, M. (2003). “Analysis of an irrigation district in northeastern Spain. I: Characterisation and water use assessment.” Agric. Water Manage., 61(2), 75–92.
Dobbs, N. A., Migliaccio, K. W., Dukes, M. D., Morgan, K. T., and Li, Y. C. (2013). “Interactive irrigation tool for simulating smart irrigation technologies in lawn turf.” J. Irrig. Drain. Eng., 747–754.
El Nahry, A. H., Ali, R. R., and El Baroudy, A. A. (2011). “An approach for precision farming under pivot irrigation system using remote sensing and GIS techniques.” Agric. Water Manage., 98(4), 517–531.
English, M. J., Solomon, K. H., and Hoffman, G. J. (2002). “A paradigm shift in irrigation management.” J. Irrig. Drain. Eng., 267–277.
Eurostat. (2012). “Agricultural census 2010—Main results.” 〈http://epp.eurostat.ec.europa.eu/statistics_explained/images/9/9d/Farm_labour_force_2010.PNG〉 (Jun. 11, 2013).
Evans, R. G., and King, B. A. (2012). “Site-specific sprinkler irrigation in a water-limited future.” Trans. ASABE, 55(2), 493–504.
Faci, J. M., and Bercero, A. (1991). “Efecto del viento en la uniformidad y en las pérdidas por evaporación y arrastre en el riego por aspersión.” Inv. Agric. Prod. Prot. Veg., 6(2), 171–182.
Faci, J. M., Bensaci, A., Slatni, A., and Playán, E. (2000). “A case study for irrigation modernisation: I. Characterisation of the district and analysis of water delivery records.” Agric. Water Manage, 42(3), 315–336.
Farmani, R., Abadía, R., and Savic, D. (2007). “Optimum design and management of pressurized branched irrigation networks.” J. Irrig. Drain. Eng., 528–537.
Fereres, E., and Soriano, M. A. (2007). “Deficit irrigation for reducing agricultural water use.” J. Exp. Bot., 58(2), 147–159.
Food, and Agriculture Organization of the United Nations (FAO). (2002). “FAO’s information system on water and agriculture.” 〈http://www.fao.org/nr/water/aquastat/main/index.stm〉 (Mar. 01, 2013).
Fukui, Y., Nakanishi, K., and Okamura, S. (1980). “Computer evaluation of sprinkler irrigation uniformity.” Irrig. Sci., 2(1), 23–32.
Grabow, G. L., Ghali, I. E., Huffman, R. L., Miller, G. L., Bowman, D., and Vasanth, A. (2013). “Water application efficiency and adequacy of ET-based and soil moisture-based irrigation controllers for turfgrass irrigation.” J. Irrig. Drain. Eng., 113–123.
Instituto para la Diversificación y Ahorro de la Energía (IDAE). (2008). Ahorro y eficiencia energética en la agricultura, Secretaria General de Energía del Ministerio de Industria, Tursimo y Comercio, Madrid, Spain (in Spanish).
International Energy Agency (IEA). (2012). World energy outlook 2012, IEA, Paris.
Intrigliolo, D. S., and Castel, J. R. (2005). “Effects of regulated deficit irrigation on growth and yield of young Japanese plum trees.” J Hortic. Sci. Biotech., 80(2), 177–182.
Jones, J. W., et al. (2003). “The DSSAT cropping system model.” Eur. J. Agron., 18(3–4), 235–265.
Lorite, I. J., Mateos, L., and Fereres, E. (2004). “Evaluating irrigation performance in a Mediterranean environment—II. Variability among crops and farmers.” Irrig. Sci., 23(2), 85–92.
Malano, H., and Burton, M. (2001). “Guidelines for benchmarking performance in the irrigation and drainage sector.”, International Programme for Technology and Research in Irrigation and Drainage (IPTRID)/Food and Agriculture Organization of the United Nations, Rome.
Martínez-Cob, A., Zapata, N., and Sánchez, I. (2010). “Viento y riego: La variabilidad del viento en Aragón y su influencia en el riego por aspersión.” Publication No. 2948, Series Studies (Geography), Institución Fernando el Católico, Zaragoza, Spain.
McCready, M. S., Dukes, M. D., and Miller, G. L. (2009). “Water conservation potential of smart irrigation controllers on St. Augustine grass.” Agric. Water Manage., 96(11), 1623–1632.
Merriam, J. L., Styles, S. W., and Freeman, B. J. (2007). “Flexible irrigation systems: Concept, design, and application.” J. Irrig. Drain. Eng., 2–11.
Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA). (2011). Encuesta sobre superficies y rendimientos de cultivos. Informe sobre Regadíos en España, MAGRAMA, Secretaría General Técnica, Madrid, Spain.
Ministerio de Agricultura, Pesca y Alimentación (MAPA). (1985). Anuario de Estadística Agraria, Secretaría General Técnica, MAPA, Madrid, Spain.
Ministerio de Medio Ambiente y Medio Rural y Marino (MARM). (2011). “Anuario de Estadística 2010 (Datos 2009 y 2010).” MARM, Gobierno de España, Spain, 〈http://www.magrama.gob.es/es/estadistica/temas/estad-publicaciones/anuario-de-estadistica/2010/default.aspx?parte=3&capitulo=13&grupo=4&seccion=11〉 (Mar. 01, 2013).
Montero, J., Tarjuelo, J. M., and Carrión, P. (2001). “SIRIAS: A simulation model for sprinkler irrigation: II. Calibration and validation of the model.” Irrig. Sci., 20(2), 85–98.
O’Shaughnessy, S. A., and Evett, S. R. (2010). “Developing wireless sensor networks for monitoring crop canopy temperature using a moving sprinkler system as a platform.” Appl. Eng. Agric., 26(2), 331–341.
Playán, E., Salvador, R., Faci, J. M., Zapata, N., Martinez-Cob, A., and Sánchez, I. (2005). “Day and night wind drift and evaporation losses in sprinkler solid-sets and moving laterals.” Agric. Water Manage., 76(3), 139–159.
Playán, E., et al. (2006). “Assessing sprinkler irrigation uniformity using a ballistic simulation model.” Agric. Water Manage., 84(1–2), 89–100.
Playán, E., et al. (2007). “A database program for enhancing irrigation district management in the Ebro Valley (Spain).” Agric. Water Manage., 87(2), 209–216.
Sadler, E. J., Evans, R. G., Stone, K. C., and Camp, C. R. (2005). “Opportunities for conservation with precision irrigation.” J. Soil Water Conserv., 60(6), 371–379.
Salvador, R., Martínez-Cob, A., Cavero, J., and Playán, E. (2011). “Seasonal on-farm irrigation performance in the Ebro basin (Spain): Crops and irrigation systems.” Agric. Water Manage., 98(4), 577–587.
Sánchez, I., Zapata, N., Faci, J. M., and Martínez-Cob, A. (2011). “Wind spatial variability in a sprinkler irrigated district: Implications for irrigation management.” Biosyst. Eng., 109(1), 65–75.
Seginer, I., Nir, D., and von Bernuth, D. (1991). “Simulation of wind-distorted sprinkler patterns.” J. Irrig. Drain. Eng., 285–306.
Stambouli, T. (2012). “Gestión avanzada del riego por aspersión en parcela.” Ph.D. thesis, Universidad de Zaragoza, Zaragoza, Spain.
Stanghellini, C., and Montero, J. L. (2010). “Resource use efficiency in protected cultivation: Towards the greenhouse with zero emissions.” Acta Hort. (ISHS), 927, 91–100.
United States Department of Commerce (USDC). (1986). “1984 farm and ranch irrigation survey.”, USDC, Bureau of the Census, Washington, DC.
USDA. (2009). 2007 census of agriculture, USDA, National Agricultural Statistics Service, Washington, DC.
USDA-National Agricultural Statistic Center (NASS). (2009). Census of agriculture: 2008. Farm and ranch irrigation survey, USDA, Washington, DC.
Williams, J. R., Jones, C. A., and Dyke, P. T. (1984). “A modelling approach to determining the relationship between erosion and soil productivity.” Trans ASAE, 27(1), 129–144.
World Water Assessment Programme. (2009). The United Nations World Water Development Rep. 3: Water in a changing world, UNESCO and Earthscan, Paris and London.
Zapata, N., Playán, E., Martínez-Cob, A., Sánchez, I., Faci, J. M., and Lecina, S. (2007). “From on-farm solid-set sprinkler irrigation design to collective irrigation network design in windy areas.” Agric. Water Manage, 87(2), 187–199.
Zapata, N., Playán, E., Skhiri, A., and Burguete, J. (2009). “Simulation of a collective solid-set sprinkler irrigation controller for optimum water productivity.” J. Irrig. Drain. Eng., 13–24.
Zapata, N., et al. (2013a). “Field test of an automatic controller for solid-set sprinkler irrigation.” Irrig. Sci., 31(5), 1237–1249.
Zapata, N., et al. (2013b). “Limitations to adopting regulated deficit irrigation in stone fruit orchards: A study case.” Spanish J. Agric. Res., 11(2), 529–546.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 140Issue 1January 2014

History

Received: Mar 26, 2013
Accepted: Jul 8, 2013
Published online: Jul 10, 2013
Published in print: Jan 1, 2014
Discussion open until: Mar 8, 2014

Permissions

Request permissions for this article.

Authors

Affiliations

Enrique Playán [email protected]
Researcher, Dept. of Soil and Water, EEAD-CSIC, Avda Montañana, 1005, 50059 Zaragoza, Spain (corresponding author). E-mail: [email protected]
Raquel Salvador [email protected]
Researcher, Dept. of Soil and Water, EEAD-CSIC, Avda Montañana, 1005, 50059 Zaragoza, Spain. E-mail: [email protected]
Cristina López [email protected]
Researcher, Dept. of Soil and Water, EEAD-CSIC, Avda Montañana, 1005, 50059 Zaragoza, Spain. E-mail: [email protected]
Sergio Lecina [email protected]
Researcher, Dept. of Soils and Irrigation, CITA-DGA (Associated Unit to EEAD-CSIC), Avda Montañana, 930, 50059 Zaragoza, Spain. E-mail: [email protected]
Farida Dechmi [email protected]
Researcher, Dept. of Soils and Irrigation, CITA-DGA (Associated Unit to EEAD-CSIC), Avda Montañana, 930, 50059 Zaragoza, Spain. E-mail: [email protected]
Nery Zapata [email protected]
Researcher, Dept. of Soil and Water, EEAD-CSIC, Avda Montañana, 1005, 50059 Zaragoza, Spain. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share