Technical Papers
Jun 24, 2022

Evaluation of Avocado Pear Seed Coat for Removal of Nickel and Chromium Ions from Aqueous Solution

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 26, Issue 4

Abstract

This research investigates the use of avocado (Persea americana) seed coat as a potential adsorptive material for removal of Ni(II) and Cr(VI) from aqueous solutions using a batch experimental technique of adsorption. Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive x-ray spectroscopy techniques were used to characterize the biosorbent. Biosorbent dose, pH, contact time, and concentrations of metal ions were varied to probe the adsorption efficiency of the avocado seed coat biosorbent. The effects of competing ions on the biosorption of nickel and chromium from aqueous solutions were also explored. Adsorption characteristics were well explained by the Elovich and Langmuir models with maximum monolayer coverages of 10.38 mg · g–1 (Ni2+) and 12.25 mg · g–1 (Cr6+). Removal of the metal ions was slightly inhibited by the presence of interference ions. The biosorption process was nonspontaneous and exothermic. Recovery of Ni(II) was more promising using ethylenediaminetetraacetic and hydrochloric acid than was the recovery of Cr(VI). Overall, avocado pear seed-coat powder is a good adsorbing material for removal of Ni(II) and Cr(VI) from water.

Get full access to this article

View all available purchase options and get full access to this article.

References

Adebayo, M. A., A. A. Adebayo, J. F. Adediji, and O. T. Adebayo. 2012a. “Isotherm, kinetic, and thermodynamic studies of lead (II) biosorption by Streblus asper.” Pac. J. Sci. Technol. 3 (2): 283–293.
Adebayo, M. A., J. F. Adediji, A. A. Adebayo, and O. T. Adebayo. 2012b. “Equilibrium, kinetic and thermodynamic parameters of the biosorption of Ni2+ from aqueous solution by Streblus asper.” J. Appl. Sci. 12 (1): 71–77. https://doi.org/10.3923/jas.2012.71.77.
Adebayo, M. A., L. D. T. Prola, E. C. Lima, M. J. Puchana-Rosero, R. Cataluña, C. Saucier, C. S. Umpierres, J. C. P. Vaghetti, L. G. da Silva, and R. Ruggiero. 2014. “Adsorption of Procion blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese.” J. Hazard. Mater. 268: 43–50. https://doi.org/10.1016/j.jhazmat.2014.01.005.
Adesemuyi, M. F., M. A. Adebayo, A. O. Akinola, E. F. Olasehinde, K. A. Adewole, and L. Lajide. 2020. “Preparation and characterisation of biochars from elephant grass and their utilisation for aqueous nitrate removal: Effect of pyrolysis temperature.” J. Environ. Chem. Eng. 8 (6): 104507. https://doi.org/10.1016/j.jece.2020.104507.
Ahmed, J., A. Thakur, and A. Goyal. 2021. “Industrial wastewater and its toxic effects.” In Biological treatment of industrial wastewater, edited by M. P. Shah, 1–14. London: Royal Society of Chemistry.
Aiyesanmi, A. F., M. A. Adebayo, and Y. Arowojobe. 2020. “Biosorption of lead and cadmium from aqueous solution in single and binary systems using avocado pear exocarp: Effects of competing ions.” Anal. Lett. 53 (18): 2868–2885. https://doi.org/10.1080/00032719.2020.1760294.
Alomá, I., M. A. Martín-Lara, I. L. Rodríguez, G. Blázquez, and M. Calero. 2012. “Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse.” J. Taiwan Inst. Chem. Eng. 43: 275–281. https://doi.org/10.1016/j.jtice.2011.10.011.
Amarasinghe, B. M. W. P. K., and R. A. Williams. 2007. “Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater.” Chem. Eng. J. 132: 299–309. https://doi.org/10.1016/j.cej.2007.01.016.
Annadurai, G., R. S. Juang, and D. J. Lee. 2003. “Adsorption of heavy metals from water using banana and orange peels.” Water Sci. Technol. 47: 185–190. https://doi.org/10.2166/wst.2003.0049.
APHA (American Public Health Association). 2005. Chromium 3500-Cr D Calorimetric method, standard methods for the examination of water and wastewater. 17th ed. Washington, DC: APHA.
Aravid, J., G. Sudha, P. Kanmani, A. J. Devisri, S. Dhivyalakshmi, and M. Raghavprasad. 2015. “Equilibrium and kinetic study on chromium (VI) removal from simulated waste water using gooseberry seeds as a novel biosorbent.” Global J. Environ. Sci. Manage. 1 (3): 233–244.
Bazzo, A., M. A. Adebayo, S. L. P. Dias, E. C. Lima, J. C. P. Vaghetti, E. R. de Oliveira, A. J. B. Leite, and F. A. Pavan. 2016. “Avocado seed powder: Characterization and its application for crystal violet dye removal from aqueous solutions.” Desalin. Water Treat. 57 (34): 15873–15888. https://doi.org/10.1080/19443994.2015.1074621.
Beidokhti, M. Z., S. T. Naeeni (Omid), and M. S. AbdiGhahroudi. 2019. “Biosorption of Nickel (II) from aqueous solutions onto Pistachio Hull waste as a low-cost biosorbent.” Civ. Eng. J. 5 (2): 447–457. https://doi.org/10.28991/cej-2019-03091259.
Bhattacharya, A. K., S. N. Mandal, and S. K. Das. 2006. “Removal of Cr(VI) from aqueous solution by adsorption onto low cost non-conventional adsorbents.” Indian J. Chem. Technol. 13: 364–371.
Bishnoi, N. R., M. Bajaj, N. Sharma, and A. Gupta. 2004. “Adsorption of Cr(VI) on activated rice husk carbon and activated alumina.” Bioresour. Technol. 91: 305–307. https://doi.org/10.1016/S0960-8524(03)00204-9.
Boonamnuayvitaya, V., C. Chaiya, W. Tanthapanichakoon, and S. Jarudilokkul. 2004. “Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay.” Sep. Purif. Technol. 35: 11–22. https://doi.org/10.1016/S1383-5866(03)00110-2.
Briffa, J., E. Sinagra, and R. Blundell. 2020. “Heavy metal pollution in the environment and their toxicological effects on humans.” Heliyon 6: e04691. https://doi.org/10.1016/j.heliyon.2020.e04691.
Brown, P., I. Atly Jefcoat, D. Parrish, S. Gill, and E. Graham. 2000. “Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution.” Adv. Environ. Res. 4: 19–29. https://doi.org/10.1016/S1093-0191(00)00004-6.
Bulut, Y., and Z. Basal. 2006. “Removal of Pb(II) from wastewater using wheat bran.” J. Environ. Manage. 78: 107–113. https://doi.org/10.1016/j.jenvman.2005.03.010.
Chatterjee, A., and J. Abraham. 2019. “Desorption of heavy metals from metal loaded sorbents and e-wastes: A review.” Biotechnol. Lett. 41: 319–333. https://doi.org/10.1007/s10529-019-02650-0.
Cruz-Lopes, L. P., M. Macena, B. Esteves, and R. P. F. Guiné. 2021. “Ideal pH for the adsorption of metal ions Cr6+, Ni2+, Pb2+ in aqueous solution with different adsorbent materials.” Open Agric. 6: 115–123. https://doi.org/10.1515/opag-2021-0225.
Das, B., N. K. Mondal, P. Roy, and S. Chattaraj. 2013. “Equilibrium, kinetic and thermodynamic study on Chromium(VI) removal from aqueous solution using Pistia Stratiotes biomass.” Chem. Sci. Trans. 2 (1): 85–104. https://doi.org/10.7598/cst2013.318.
dos Reis, G. S., M. A. Adebayo, E. C. Lima, C. H. Sampaio, and L. D. T. Prola. 2016. “Activated carbon from sewage sludge for preconcentration of copper.” Anal. Lett. 49 (4): 541–555. https://doi.org/10.1080/00032719.2015.1076833.
El-Ashtouky, E.-S. Z., N. K. Amin, and O. Abdelwahab. 2008. “Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent.” Desalin. 223 (3): 162–173. https://doi.org/10.1016/j.desal.2007.01.206.
Elkhaleefa, A., I. H. Ali, E. I. Brima, A. B. Elhag, and B. Karama. 2020. “Efficient removal of Ni(II) from aqueous solution by date seeds powder biosorbent: Adsorption kinetics, isotherm and thermodynamics.” Processes 8: 1001. https://doi.org/10.3390/pr8081001.
El-Sayed, G. O., H. Dessowki, and S. S. Ibrahim. 2011. “Removal of Zn(II), Cd(II) and Mn(II) from aqueous solutions by adsorption on maize stalks.” Malaysian J. Anal. Sci. 15: 8–21.
Fawzy, M., M. Nasr, A. Abdel-Gaber, and S. Fadly. 2016. “Biosorption of Cr(VI) from aqueous solution using agricultural wastes, with artificial intelligence approach.” Sep. Sci. Technol. 51 (3): 416–426. https://doi.org/10.1080/01496395.2015.1115068.
Fazal, A., and U. Rafique. 2012. “Biosorption of cadmium on spent tea: Green chemistry approach.” J. Water Sustain. 2 (4): 259–270.
Feng, Q., Q. Lin, F. Gong, S. Sugita, and M. Shoya. 2004. “Adsorption of lead and mercury by rice husk ash.” J. Colloid Interface Sci. 278: 1–8. https://doi.org/10.1016/j.jcis.2004.05.030.
Festus, A., O. Elvis, and A. Morayo. 2013. “Equilibrium sorption of lead and nickel from solutions by flame of the forest (Delonix regia) pods: Kinetics and isothermic study.” J. Environ. Protect. 4: 261–269. https://doi.org/10.4236/jep.2013.43031.
Gadd, G. M. 2001. Fungi in Bioremediation, 421–426. New York: Cambridge University Press.
Gautam, R. K., A. Mudhoo, G. Lofrano, and M. G. Chattopadhyaya. 2014. “Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration.” J. Environ. Chem. Eng. 2: 239–259. https://doi.org/10.1016/j.jece.2013.12.019.
Ghrab, S., S. Mefteh, M. Medhioub, and M. Benzina. 2018. “Adsorption of nickel(II) and chromium(III) from aqueous phases on raw smectite: Kinetic and thermodynamic studies.” Arabian J. Geosci. 11: 440. https://doi.org/10.1007/s12517-018-3749-2.
Gupta, S., and A. Kumar. 2019. “Removal of nickel (II) from aqueous solution by biosorption on A. barbadensis Miller waste leaves powder.” Appl. Water Sci. 9: 96. https://doi.org/10.1007/s13201-019-0973-1.
Gupta, S., S. K. Sharma, and A. Kumar. 2019. “Biosorption of Ni(II) ions from aqueous solution using modified Aloe barbadensis Miller leaf powder.” Water Sci. Eng. 12 (1): 27–36. https://doi.org/10.1016/j.wse.2019.04.003.
Ho, Y. S., W. T. Chiu, C. S. Hsu, and C. T. Huang. 2004. “Sorption of lead ions from aqueous solutions using tree fern as adsorbent.” Hydrometallurgy 73: 55–61. https://doi.org/10.1016/j.hydromet.2003.07.008
Jock, A. A., I. O. Oboh, U. E. Inyang, L. P. Ganchok, and O. Adeku. 2021. “Chromium and nickel metal ions removal from contaminated water using Nigerian bentonite clay.” Water Pract. Technol. 16 (3): 825–836. https://doi.org/10.2166/wpt.2021.031.
John, A. C., L. O. Ibironke, V. Adedeji, and O. Oladunni. 2011. “Equilibrium and kinetic studies of the biosorption of heavy metal (cadmium) on Cassia siamea bark.” Am. Eurasian J. Sci. Res. 6 (3): 123–130.
Karthikeyan, T., S. Rajgopal, and L. Miranda. 2005. “Chromium(VI) adsorption from aqueous solution by sawdust activated carbon.” J. Hazard. Mater. 124: 192–199. https://doi.org/10.1016/j.jhazmat.2005.05.003.
Kimani, N. G. 2007. Environmental pollution and impacts on public health: Implications of the dandora municipal dumping site in Nairobi, Kenya, 1–31. Nairobi, Kenya: United Nations Environment Programme.
Kwikima, M., S. Mateso, and Y. Chebude. 2021. “Potentials of agricultural wastes as the ultimate alternative adsorbent for cadmium removal from wastewater. A review.” Sci Afr. 13: e00934.
Lata, S., P. K. Singh, and S. R. Samadder. 2015. “Regeneration of adsorbents and recovery of heavy metals: A review.” Int. J. Environ. Sci. Technol. 12: 1461–1478. https://doi.org/10.1007/s13762-014-0714-9.
Mahajan, G., and D. Sud. 2011. “Kinetics and equilibrium studies of Cr(VI) metal ion remediation by Arachis Hypogea shells: A green approach.” BioResources 6 (3): 3324–3338.
Malik, U., S. Hassany, and M. Subhani. 2005. “Sorptive potential of sunflower stem for Cr(III) ions from aqueous solutions and its kinetic and thermodynamic profile.” Talanta 66: 166–173. https://doi.org/10.1016/j.talanta.2004.11.013.
Mekonnen, E., M. Yitbarek, and T. R. Soreta. 2015. “Kinetic and thermodynamic studies of the adsorption of Cr(VI) onto some selected local adsorbents.” S. Afri. J. Chem. 68: 45–52.
Moghal, A. A. B., S. A. S. Mohammed, A. Almajed, and M. A. Al-Shamrani. 2020. “Desorption of heavy metals from lime-stabilized arid-soils using different extractants.” Int. J. Civ. Eng. 18: 449–461. https://doi.org/10.1007/s40999-019-00453-y.
Moghal, A. A. B., K. R. Reddy, S. A. S. Mohammed, M. A. Al-Shamrani, and W. M. Zahid. 2016. “Lime-Amended semi-arid soils in retaining copper, lead, and zinc from aqueous solutions.” Water Air Soil Pollut. 227: 372. https://doi.org/10.1007/s11270-016-3054-1.
Moghal, A. A. B., K. R. Reddy, S. A. S. Mohammed, M. A. Al-Shamrani, and W. M. Zahid. 2017. “Sorptive response of Chromium (Cr+6) and Mercury (Hg+2) from aqueous solutions using chemically modified soils.” J. Test. Eval. 45 (1): 105–119.
Mohammed, S. A. S., P. F. Sanaulla, and A. A. B. Moghal. 2016. “Sustainable use of locally available red earth and black cotton soils in retaining Cd2+ and Ni2+ from aqueous solutions.” Int. J. Civ. Eng. 14: 491–505. https://doi.org/10.1007/s40999-016-0052-z.
Nasseh, N., L. Taghavi, B. Barikbin, and A. R. Harifi-Mood. 2017. “The removal of Cr(VI) from aqueous solution by almond green hull waste material: Kinetic and equilibrium studies.” J. Water Reuse Desalin. 7 (4): 449–460. https://doi.org/10.2166/wrd.2016.047.
Okoronkwo, A. E., A. O. Adebayo, and O. I. Omotunde. 2013. “Sorptive removal of cadmium from aqueous solutions by Delonix regia derived lignin: Effect of amination.” Desalination Water Treat. 51: 25–27.
Olasehinde, E. F., A. V. Adegunloye, M. A. Adebayo, and A. A. Oshodi. 2018. “Sequestration of aqueous lead(II) using modified and unmodified red onion skin.” Anal. Lett. 51 (17): 2710–2732. https://doi.org/10.1080/00032719.2018.1448989.
Olasehinde, E. F., A. V. Adegunloye, M. A. Adebayo, and A. A. Oshodi. 2019. “Cadmium (II) adsorption from aqueous solutions using onion skins.” Water Conserv. Sci. Eng. 4 (4): 175–185. https://doi.org/10.1007/s41101-019-00077-2.
Olasunkanmi, O., A. E. Okoronkwo, A. F. Aiyesanmi, E. F. Olasehinde, and T. S. Adepoju. 2014. “Biosorption of cadmium (II) and chromium (VI) from aqueous solution by chemically modified Tithonia Diversyfolia biomass.” J. Am. Sci. 10 (7): 10–18.
Olayinka, O. K., O. A. Oyedeji, and O. A. Oyeyiola. 2009. “Removal of chromium and nickel ions from aqueous solution by adsorption on modified coconut husk.” Afr. J. Environ. Sci. Technol. 3 (10): 286–293.
Parlayici, Ş, and E. Pehlivan. 2019. “Comparative study of Cr(VI) removal by bio-waste adsorbents: Equilibrium, kinetics, and thermodynamic.” J. Anal. Sci. Technol. 10: 15. https://doi.org/10.1186/s40543-019-0175-3.
Popoola, T. J., A. E. Okoronkwo, O. O. Oluwasina, and M. A. Adebayo. 2021. “Preparation, characterization, and application of a homemade graphene for the removal of Congo red from aqueous solutions.” Environ. Sci. Pollut. Res. 28 (37): 52174–52187. https://doi.org/10.1007/s11356-021-14434-z.
Rangabhashiyam, S., N. Anu, and N. Selvaraju. 2014. “Equilibrium and kinetic modeling of chromium (VI) removal from aqueous solution by a novel biosorbent.” Res. J. Chem. Environ. 18: 30–36.
Ren, B., Q. Zhang, X. Zhang, L. Zhaob, and H. Li. 2018. “Biosorption of Cr(vi) from aqueous solution using dormant spores of Aspergillus Niger.” RSC Adv. 8: 38157. https://doi.org/10.1039/C8RA07084A.
Revathi, M., B. Kavitha, and T. Vasudevan. 2005. “Removal of nickel ions from industrial plating effluents using activated alumina as adsorbent.” J. Environ. Sci. Eng. 47: 1–6.
Ribas, M. C., M. A. E. de Franco, M. A. Adebayo, E. C. Lima, G. M. B. Parkes, and L. A. Féris. 2020. “Adsorption of procion Red MX-5B dye from aqueous solution using homemade peach and commercial activated carbons.” Appl. Water Sci. 10 (6): 154. https://doi.org/10.1007/s13201-020-01237-9.
Sachan, D., and G. Das. 2022. “Fabrication of biochar-impregnated MnO2 nanocomposite: Characterization and potential application in copper (II) and zinc (II) adsorption.” J. Hazard. Toxic Radioact. Waste 26 (1): 04021049. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000663.
Sarkar, M., and P. K. Acharya. 2006. “Use of fly ash for the removal of phenol and its analogues from contaminated water.” Waste Manage. (Oxford) 26 (10): 559–570. https://doi.org/10.1016/j.wasman.2005.12.016.
Sarý, A., M. Tuzen, Ö. D. Uluözlü, and M. Soylak. 2007. “Biosorption of Pb(II) and Ni(II) from aqueous solution by lichen (cladonia furcata) biomass.” Biochem. Eng. J. 37 (2): 151–158. https://doi.org/10.1016/j.bej.2007.04.007.
Sharma, Y. C., V. Srivastava, S. N. Upadhyay, and C. H. Weng. 2008. “Alumina nanoparticles for the removal of Ni(II) from aqueous solutions.” Ind. Eng. Chem. Res. 47: 8095–8100. https://doi.org/10.1021/ie800831v.
Smiciklas, I., S. Dimovic, I. Places, and M. Metric. 2006. “Removal of Co2+ from aqueous solutions by hydroxyapatite.” Water Res. 40: 2267–2274. https://doi.org/10.1016/j.watres.2006.04.031.
Song, C., S. Wu, M. Cheng, P. Tao, M. Shao, and G. Gao. 2014. “Adsorption studies of coconut shell carbons prepared by KOH activation for removal of lead(II) from aqueous solutions.” Sustainability 6: 86–89. https://doi.org/10.3390/su6010086.
Tyagi1, U., and V. Khandegar. 2018. “Biosorption potential of vetiveria zizanioides for the removal of chromium(VI) from synthetic wastewater.” J. Hazard. Toxic Radioact. Waste 22 (4): 04018014. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000403.
Umpierres, C. S., L. D. T. Prola, M. A. Adebayo, E. C. Lima, G. S. dos Reis, D. D. F. Kunzler, G. L. Dotto, L. T. Arenas, and E. V. Benvenutti. 2017. “Mesoporous Nb2O5/SiO2 material obtained by sol-gel method and applied as adsorbent of Crystal Violet dye.” Environ. Technol. 38 (5): 566–578. https://doi.org/10.1080/09593330.2016.1202329.
Volesky, B. 2001. “Detoxification of metal-bearing effluents: Biosorption for the next century.” Hydrometallurgy 59: 203–216. https://doi.org/10.1016/S0304-386X(00)00160-2.
Waruhiu, A. N., J. Kengue, A. R. Atangana, Z. Tchoundjeu, and R. R. Leakey. 2004. “Domestication of Dacryodes edulis. 2. phenotypic variation of fruit traits in 200 trees from four populations in the humid lowlands of Cameroon.” Food Agric. Environ. 2 (1): 340–346.
Weber, W. J., and J. C. Morris. 1963. “Kinetics of adsorption on carbon from solution.” J. Sanit. Eng. Div. 89: 31–59. https://doi.org/10.1061/JSEDAI.0000430.
Wierzba, S. 2017. “Biosorption of nickel (II) and zinc (II) from aqueous solutions by the biomass of yeast Yarrowia lipolytica.” Pol. J. Chem. Technol. 19 (1): 1–10. https://doi.org/10.1515/pjct-2017-0001.
Yakout, S. M., and E. Elsherif. 2010. “Batch kinetics, isotherm and thermodynamic studies of adsorption of strontium from aqueous solutions onto low cost rice-straw based carbons.” Carbon Sci. Technol. 1: 144–153.
Yin, P., Q. Yu, B. Jin, and Z. Ling. 1999. “Biosorption removal of cadmium from aqueous solution by using pretreated fungal biomass cultured from starch wastewater.” Water Res. 33: 1960–1963. https://doi.org/10.1016/S0043-1354(98)00400-X.
Zhang, K., Z. Dai, W. Zhang, Q. Gao, Y. Dai, F. Xia, and X. Zhang. 2021. “EDTA-based adsorbents for the removal of metal ions in wastewater.” Coord. Chem. Rev. 434: 213809. https://doi.org/10.1016/j.ccr.2021.213809.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 26Issue 4October 2022

History

Received: Mar 23, 2022
Accepted: May 8, 2022
Published online: Jun 24, 2022
Published in print: Oct 1, 2022
Discussion open until: Nov 24, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ademola F. Aiyesanmi, Ph.D. [email protected]
Dept. of Chemistry, The Federal Univ. of Technology, Akure, Ondo State, Nigeria. Email: [email protected]
Dept. of Chemistry, The Federal Univ. of Technology, Akure, Ondo State, Nigeria (corresponding author). ORCID: https://orcid.org/0000-0002-6009-4075. Email: [email protected]
Folasade F. Fadairo [email protected]
Dept. of Chemistry, The Federal Univ. of Technology, Akure, Ondo State, Nigeria. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share